标题: | 适用于全耳道式数位助听器之低耗电杂讯及回授消除系统设计 Low Power Noise and Feedback Reduction for Digital CIC Hearing Aids |
作者: | 魏诚文 Wei, Cheng-Wen 周世杰 张添烜 Jou, Shyh-Jye Chang, Tian-Sheuan 电子研究所 |
关键字: | 助听器;杂讯消除;回授消除;低功率超大型积体电路;Hearing Aids;Noise Reduction;Feedback Cancellation;Low Power VLSI |
公开日期: | 2012 |
摘要: | 由于积体电路制程与讯号处理方面的进步下数位助听器已经具有进一步提升效能及使用者经验的能力。然而,因为目前助听器仍受限于有限的电池容量,故要在助听器上实现复杂的演算法仍然是非常的困难;目前为止,最有效的方法仍为透过有效率的低耗电演算法,架构与电路设计达成。在本篇论文中,我们提出助听器中两个非常重要的功能,杂讯消除(noise reduction)与回授音消除(feedback cancellation)的低功率解决方案。 在杂讯消除方面,我们基于符合人耳特性的听觉式分频(perceptual frequency decomposition)概念,提出三种设计。在第一种设计中,我们提出一个混和式的分频方式(mixed decomposition),搭配简单但有效率的频谱相减法(spectral subtraction)及语音侦测(voice activity detection, VAD),来达成超低耗电的杂讯消除;本设计透过0.18μm标准元件库制程,在1.0V之下耗电仅为0.65μW。本设计可提供不错的SNR提升,然而,因为其采用较简单的杂讯消除方法,故无法提供较佳的声音品质。为解决此问题,在第二个杂讯消除设计中,我们基于助听器的ANSI S1.11 1/3-octave分频滤波器组(filter bank),提出时间轴多频带频谱相减法(sample based multiband spectral subtraction)及时间轴焗语音侦测(sample based entropy VAD);此方法中,我们提出预处理(preprocessing)以及其他低功率的最佳化来达成助听器耗电以及即时(real time)的需求。本演算法可达成不错的SNR以及音质方面的提升,基于90nm高阈值(high threshold voltage)标准元件库制程的实现则显示其可在0.6V之下达成约83.7μW的耗电。然而,此杂讯消除方法仍受限于VAD本身在低讯杂比下的高误差率影响,为解决此问题,第三个杂讯消除设计中,我们基于人类语音中最强健的音高(pitch)部分,设计出基于音高的语音侦测器,实验显示本侦测器在低SNR甚至变动(SNR或杂讯性质)的环境中,仍能达到稳定的高性能,基于音高的概念,我们进一步设计了杂讯消除方法,实验显示,本杂讯消除在变动环境下亦可以提供稳定的效能,SNR约可提升4dB,65nm高阈值标准元件库制程的晶片实现则显示其在0.5V的运作下耗电量约为55.52μW。 在回授音消除的方面,我们基于音高处里的概念,透过音高的资讯设计出语音共振峰预估的方法,此方法可以有效率的估测语音能量的分布,并用来辅助可适性回授消除演算法(adaptive feedback cancellation)的系数更新,降低语音信号对回授消除的影响,维持稳定的助听器增益及音质;相对于传统的做法,本设计的运算复杂度可以大幅降低约五个数量级,但仍可提供接近的音质。针对未来的助听器系统晶片(SOC)发展,本论文亦提出了基于音高处理的处理器架构,可以提升助听器的效能并降低耗电。 With the advanced digital technology and signal processing, digital hearing aids have more potential to provide good performance to improve user usage experience. However, these sophisticated signal processing algorithms are still hard to be integrated due to the limitation of battery size and capacity, which demands efficient low power algorithm, architecture and circuit design. Thus, this dissertation proposes low power designs for two fundamental blocks of hearings aids: noise reduction (NR) and feedback cancellation (FC). The proposed NR designs are based on perceptual decomposition for efficient processing. The first NR design adopts a mixed frequency decomposition in conjunction with an efficient spectral subtraction and VAD (voice activity detection) for ultra low power noise suppression. The design can achieve about 4dB SNR improvement in low SNR environment and only consumes 0.65μW at 1.0V operation using 0.18μm process. However, this design adopts a simple scheme for NR, thus not providing good perceptual performance. To solve this problem, the second NR proposes an efficient multiband spectral subtraction design by using sample based processing, data preprocessing scheme and other sophisticated strategies to meet low power and low latency requirement. This design can achieve robust sound quality improvement in terms of SNR, PESQ and composite measure with 83.7μW at 0.6V operation with 90nm HVT (high VT) standard cell library. The performance of the second design is limited by the accuracy of entropy VAD in low SNR and nonstationary environment. To solve this problem, the third design proposes an efficient pitch based VAD for robust voice detection to assist noise suppression. This VAD has an efficient structure and is robust even in nonstationary environment. Based on this VAD, the noise suppression can provide 4dB SNR improvement with 55.52μW at 0.5V operation with 0.65μm high VT process. The pitch based processing is further applied to FC design which uses pitch results to estimate speech formant to enhance the robustness and the sound quality of adaptive feedback cancellation (AFC). The proposed AFC design can achieve similar added stable gain (ASG) and PESQ but with five orders complexity reduction compared to conventional designs. Based on the pitch based information, this dissertation also proposes an efficient pitch based processor for further system development. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079511821 http://hdl.handle.net/11536/41058 |
显示于类别: | Thesis |