Full metadata record
DC FieldValueLanguage
dc.contributor.author邱思翰en_US
dc.contributor.authorChiou, Sz-Hanen_US
dc.contributor.author范倫達en_US
dc.contributor.authorVan, Lan-Daen_US
dc.date.accessioned2014-12-12T01:34:14Z-
dc.date.available2014-12-12T01:34:14Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079655614en_US
dc.identifier.urihttp://hdl.handle.net/11536/43420-
dc.description.abstract在本論文中,我們針對FastICA演算法設計一個應用於四通道EEG訊號分離低功耗的架構。為了達到低功耗,主要提出三個方法1) 混合型定點數運算單元與浮點數運算單元之系統;2) 在資料前處理使用單一坐標旋轉數位計算機實現特徵值分解處理器;3) 雙曲正切函數使用分段線性逼近應用於定點迭代法。 低功耗的FastICA架構使用TSMC 0.18um CMOS 製程,其晶片面積為2.25 mm2。在操作頻率為50 MHz與操作電壓為1.8伏特的情況下,最大功率消耗為7.662 mW。zh_TW
dc.description.abstractThis thesis presents a low-power VLSI architecture for fast independent component analysis (FastICA) with the application to four-channel EEG signal separation. The proposed low-power schemes are as follows. 1) hybrid of fixed-point and floating-point number system; 2) CORDIC reuse scheme for eigenvalue decomposition (EVD) in the preprocessing part; 3) piecewise linear approximation for hyperbolic tangent in fixed-point iteration algorithm. From the experimental results, the satisfactory correlation coefficient can be achieved. The low-power FastICA implemented in TSMC 0.18um CMOS technology process consumes 7.662 mW at 50 MHz at 1.8 voltage with the size of 2.25 mm2.en_US
dc.language.isoen_USen_US
dc.subject獨立成分分析zh_TW
dc.subject快速獨立成分分析zh_TW
dc.subject座標旋轉系統zh_TW
dc.subject混合浮點定點運算系統zh_TW
dc.subjectICAen_US
dc.subjectFastICAen_US
dc.subjectCORDICen_US
dc.subjectHybrid systemen_US
dc.title應用於四通道EEG訊號分離之低功耗FastICA設計與實現zh_TW
dc.titleDesign and Implementation of Low-Power Fast Independent Component Analysis for Four Channels EEG Signal Separationen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis