标题: 氮化矽层内嵌奈米矽晶体之SONOS型记忆体的分析
The analysis of SONOS memory with embedded silicon nanocrystals in nitride
作者: 戴华安
Dai, Hua-An
陈振芳
Chen, Jenn-Fang
电子物理系所
关键字: 记忆体;奈米矽晶体;保存能力;能带图;模拟;电容电压;SONOS;nanocrystal;retention;band diagram;simulation;CV
公开日期: 2009
摘要: 本论文为氮化矽层内嵌奈米矽晶体(Si-NCs)之SONOS型记忆体的电性分析。藉由电容-电压的模拟可以确认在半导体与氧化层间存在一界面状态(interface state),并且得到界面状态浓度与氧化层内固定电荷大小;成长Si-NCs这一过程会减少界面状态(Dit),并且增加氧化层内固定电荷(NQss)。
在成长时间Si-NCs 2min的样品发现,在DLTS的量测中除了界面状态的讯号,还多了一个额外载子放射讯号。利用能带图模拟,发现此额外讯号出现的量测偏压正好是外质费米能阶靠近Si-NCs的导带的时候,因此推测此讯号跟Si-NCs有关。储存电荷到Si-NCs 2min的样品中,并不会影响界面状态的特性,但对于Si-NCs的内层讯号在DLTS量测到的放射时间会变大,利用能带图模拟,建立此讯号的放射机制:从Si-NCs导带上的电子的允许能阶藉着穿隧过氮化矽的缺陷能阶(Trap-assisted tunneling,TAT),再穿隧到半导体与氧化层间的界面状态,并且包含了热激发的放射过程。储存电荷之后载子放射时间变长是由于热激发放射过程的改变。这个机制证明了Si-NCs的确有在Si-NCs的传导带上形成类似量子局限状态。成长Si-NCs提供了更多可储存的状态,使得记忆窗变大。
有Si-NCs的样品因为有部分载子储存在Si-NCs较深的能阶上,因此保存能力会比没有成长Si-NCs的样品好。我们储存相同数量的电荷到样品中,并且假设不同的储存电荷分布,模拟Si-NCs 2min、Si-NCs 1min30sec两个样品在保存状态的能带图,发现Si-NCs 2min的样品在氮化矽缺陷能阶所要经过的穿隧位能障较低,因此Si-NCs 1min30sec的样品会比Si-NCs 2min的样品有拥有更好的载子保存能力。由于不同的电荷分布,而使得保存能力也有所不同。从量测与模拟的结果指出:在氮化矽层成长Si-NCs的SONOS型记忆体的确造成更多可储存状态,并且使储存的载子保存的更久。
We investigate the electrical properties of SONOS memories with embedded Si-nanocrystals(Si-NCs) in Si3N4. The capacitance-voltage(C-V) simulations identify the interface states at Si-substrate/SiO2 interface. Simulation results also obtain interface state density (Dit) and amount of fixed oxide charges (NQss). The process of Si-NCs formation can reduce the interface state density and increase the amount of fixed oxide charges.
In deep level transient spectroscopy (DLTS) measurement, the Si-NCs 2min sample appears an extra signal beside interface states signal. The band diagram simulation reveals that the extrinsic Fermi-level is close to Si-NCs conduction band when the extra signal is measured. These results demonstrate that the extra signal is originated from the Si-NCs. After programming carriers into Si-NCs 2min sample, the interface states signal is nearly unchanged, and the emission time constant of Si-NCs related signal is increased. According to the band diagram simulation, we propose the emission mechanism of Si-NCs related signal: Electrons tunnel from Si-NCs to nitride bulk trap, and then tunnel from nitride bulk trap to interface states ( trap-assisted tunneling (TAT)). The TAT process includes thermal emission process. The increase of emission time constant after programming is due to the conversion of thermal emission process. This emission mechanism also reveals the existences of quantum confined states above Si-NCs conduction band. Thus, embedded Si-NCs in Si3N4 act as a formation of Si-quantum dots in Si3N4, and provide more programmable states for SONOS memory.
Retention abilities of embedded Si-NCs samples are better than SONOS. The difference of retention abilities is due to parts of programmed carriers are stored in Si-NCs. We program the same amount of carriers into samples, and we assume different distributions of programmed carriers in Si-NCs 1min30sec and Si-NCs 2min samples. Si-NCs 2min sample stores more carriers in Si-NCs than Si-NCs 1min30sec sample. Band diagram simulation demonstrates that the tunneling barrier is lower in Si-NCs 2min sample than in Si-NCs 1min30sec sample. The difference of tunneling barriers results Si-NCs 1min30sec sample has better retention ability than Si-NCs 2min sample. Different distributions of storage carriers result different retention abilities. The results of experiments and simulations reveal Si-NCs in Si3N4 produce more programmable states and enhance carrier retention abilities.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079721519
http://hdl.handle.net/11536/45007
显示于类别:Thesis


文件中的档案:

  1. 151901.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.