標題: | 建立遠期LIBOR利率的聯合機率分配 Construct Joint Probability Distribution of Forward LIBOR Rate |
作者: | 陳雅雯 戴天時 財務金融研究所 |
關鍵字: | LIBOR 市場模型;Cholesky 分解定理;蒙地卡羅模擬法;LMM;Cholesky decomposition;Monte Carlo simulation |
公開日期: | 2010 |
摘要: | 本論文將以LIBOR 市場模型為基礎,根據不同到期日生效之節點重合遠期利率
樹,提出創新方法建造多期間的遠期利率樹之聯合機率分配。由於LIBOR 市場模
型屬於非馬可夫過程,因此在建立樹狀結構時,因路徑相依的特性造成每期節點
無法重合。本論文採用Ho、Stapleton 和Subrahmanyam(1995)提供節點重合的
建樹方法,建構遠期LIBOR 利率之樹狀結構模型。本文考慮多期的遠期利率之相
關性,利用Cholesky 分解定理的概念,並結合Andricopoulos et al.(2003)求面
積法,推導出遠期LIBOR 利率的聯合機率分配。不僅能夠求算不同期間生效的遠
期利率之條件機率,亦能評價各種型式的利率衍生性商品,並與實務上常受應用
的蒙地卡羅模擬法做比較,證明樹狀模型評價之準確性。 This thesis proposes the innovative method of constructing the joint probabilities of forwards rates based on the trees for LIBOR market model. Ho(2008) builds recombined interest trees for simulating the evolution of forwards rates. We suggest that the joint probabilities of forward rates can be constructed by calibrating the correlations with Cholesky decomposition and Andricopoulos et al.(2003)quadrature method. The Monte Carlo simulation is given to verify the correctness of our method in pricing the interest rate derivatives. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079739543 http://hdl.handle.net/11536/45678 |
顯示於類別: | 畢業論文 |