標題: | 三維面著色的連繫算子 Connecting operator of 3- dimensional Face Coloring |
作者: | 詹惠雯 Chan, Hui-Wen 林松山 Lin, Song-Sun 應用數學系所 |
關鍵字: | 熵;花樣生成;Entropy;Pattern generation |
公開日期: | 2011 |
摘要: | 這個研究主要是要去計算三維度兩個顏色的熵,但首先必須利用一個特
殊的矩陣轉移以及矩陣自乘的性質所發展出來的遞迴公式去解決三維
度兩個顏色下面著色的花樣生成問題。
接下來,給一個限制集則就可以定義出轉移矩陣而且它的遞迴公式也會
被表現出來。最後,只需去計算連繫算子的最大特徵值即可計算出熵的
問題。 The work investigates entropy of 3-dimensional face coloring, but we need to solve three-dimensional pattern generation problem with edge- coloring by first useing a special Matrix transfer and self-multiply matrices to establish some recursive formulas, first. Now, given admissible set of local patterns then the transition matrix is defined and the recursive formulas are presented. Finally the entropy is obtained by computing the maximum eigenvalues of a sequence of connecting operator. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079922511 http://hdl.handle.net/11536/49759 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.