Full metadata record
DC FieldValueLanguage
dc.contributor.author謝文炫en_US
dc.contributor.authorWen-Hsuan Hsiehen_US
dc.contributor.author黃國源en_US
dc.contributor.authorKuo-Yuan Huangen_US
dc.date.accessioned2014-12-12T02:04:39Z-
dc.date.available2014-12-12T02:04:39Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009123552en_US
dc.identifier.urihttp://hdl.handle.net/11536/53079-
dc.description.abstract我們應用蜂巢式類神經網路(cellular neural network)於震測水平連接(seismic horizon linking)與圖型識別。蜂巢式類神經網路具有區域連接的特性,適合處理一些有區域規則性連接的特定運算,所以適合於震測水平連接。我們經由建構數種不同的peak分佈條件,以其形成的能量方程式和蜂巢式類神經網路之標準能量方程式做比較,完成網路訓練的過程,然後我們利用這完成訓練的網路來處理震測水平連接的問題。檢取震測水平反射層,將有助於震測資料的處理及震測資料的解釋。另一個應用是震測圖型識別。我們將蜂巢式類神經網路設計成聯想記憶體,然後運用此聯想記憶體辨識震測圖型。震測圖型識別將有助於震測資料之分析及解釋。zh_TW
dc.description.abstractWe apply cellular neural networks for seismic horizon linking and pattern recognition. Cellular neural networks have the characteristic of local connection. It is suited for some operations which have the characteristic of local regular connection. So it is suited for seismic horizon linking. We establish the energy function by setting several different constraints of peak distribution. And we compare this energy function and the standard energy function of a cellular neural network, and then finish the process of network training. Then we use this network which is trained to deal with seismic horizon linking. Detecting seismic horizons will help us to deal with seismic data and interpret seismic data. Another application is seismic pattern recognition. We design cellular neural networks to behave as associative memories, and then use the associative memories to recognize seismic patterns. Seismic pattern recognition will help us to analyze and interpret seismic data.en_US
dc.language.isoen_USen_US
dc.subject蜂巢式類神經網路zh_TW
dc.subject震測水平連接zh_TW
dc.subject圖型識別zh_TW
dc.subjectCellular neural networken_US
dc.subjectHorizon linkingen_US
dc.subjectPattern recognitionen_US
dc.subjectSeismic patternen_US
dc.title蜂巢式類神經網路於震測水平連接與圖型識別zh_TW
dc.titleCellular Neural Networks for Seismic Horizon Linking and Pattern Recognitionen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 355201.pdf
  2. 355202.pdf
  3. 355203.pdf
  4. 355204.pdf
  5. 355205.pdf
  6. 355206.pdf
  7. 355207.pdf
  8. 355208.pdf
  9. 355209.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.