标题: 强轫数位影像浮水印之侦测效能增进设计
Enhanced Detection Performance Design for Robust Digital Image Watermarking
作者: 唐之玮
Chih-Wei Tang
杭学鸣
Hsueh-Ming Hang
电子研究所
关键字: 数位影像浮水印;Digital Image Watermarking
公开日期: 2004
摘要: 近年来数位浮水印研究的兴起, 主要导因于多媒体资料广泛而快速地传布, 而引发数位智产权保护的须求。 在这份论文里, 我们针对影像数位浮水印的强轫度, 侦测效益的稳定度, 浮水印容量, 浮水印的隐藏性四项浮水印重要的设计议题之间的关系做深入的研究。
我们提出两种不同型态的数位浮水印方案, 两者皆包含了理论分析, 实现与测试。 在本论文的第一个部份, 我们设计一个根据不同影像与不同攻击方式而选择嵌入浮水印有效系数的最佳化程序。 这组系数能增加浮水印的强轫度与侦测的可靠性, 同时亦能达成隐藏浮水印的目标而维持影像品质。 就某种程度上而言, 我们是在探讨在假设已知可能的攻击方式以及非盲目的侦测方式下, 离散弦波转换域的浮水印的效能极限。 由于目前的影像资料多经由JPEG压缩以达成有效的传送与储存, 所以JPEG压缩被引用为设计中攻击方式的第一个例子。 但事实上, 由于我们所提出的程序具一般性且系统化的特性, 所以此程序亦可运用来开发抗其他种类攻击的离散弦波转换域的浮水印有效系数。 因此, 我们亦引用JPEG2000压缩为另一种的攻击方式。
根据由以上理论最佳化程序运用于自然影像而获得的资料, 我们推衍出一组简化的有效系数选择的规则, 以快速地选择有效系数, 降低计算复杂度。 我们藉由参数化的分类法来达成此设计目标。 这些统计归纳出的简单规则虽然大量降低了原来最佳化程序所需的计算量, 但是仍能同时增进浮水印强轫度与降低错误侦测率。
在论文的第二个部份, 我们建构一个盲目侦测的强轫影像数位浮水印。 这个方案结合了抽取影像特征与影像正规化的技术。 设计的目标则是抗几何形变与一般数位讯号处理的攻击。 藉由嵌入浮水印时所抽取出的特征点仍能在影像经过攻击后存在的特性, 而使得浮水印嵌入器与侦测器可藉由参考这些特征点以减少复杂的同步问题。 另一方面, 根据影像中正规化的物件具有在影像旋转后不变的特性, 浮水印侦测前的同步问题亦可获得妥善的改善。 实验结果显示这个数位浮水印方案能对抗低品质的JPEG压缩, 色彩降级, 高斯滤波, 中位滤波, 栏和列的移除, 修剪, 旋转, 局部形变, 切割, 以及线性几何转换的攻击。
In the past few years, digital watermarking has received much attention mainly due to the urgent demand for the copyright protection on the widely distributed digital data. In this thesis, we study the relationship among watermark robustness, detection reliability, data payload, and imperceptibility for digital images.
We propose two different types of image watermarking schemes. They both include theoretical analysis and realization and testing. In the first part of this thesis, we design an optimization procedure for selecting the most effective DCT coefficients for watermark embedding. Using this set of coefficients improves the watermark robustness and reliability against attacks and in the meanwhile it maintains the visual transparency of the embedded watermark. To a certain extent, we try to find the “performance limit” of the DCT-domain invisible watermarking technique under the assumptions of known attack and non-blind detection. Since digital images are often compressed for efficient storage and transmission, the popular JPEG compression is used as one attacking example in our design. However, what we propose is a generic and systematic approach of finding the most effective watermarking coefficients in DCT-domain watermarking. A second example using JPEG2000 as the attacking source is also presented.
Based on the theoretically optimized data set obtained using the preceding scheme, a set of coefficient selection rules is derived with the help of parametric classification technique for determining the effective DCT watermarking coefficients without going through a costly iterative process. These rules are simple in computation. They improve the watermark robustness (correctly decoding) and, in the mean time, decrease the error detection probability (correct detection).
In the second part of this thesis, a robust and blind digital image watermarking scheme combining image feature extraction and image normalization is developed. Its goal is to resist both geometric distortion and signal processing attacks. The extracted feature points can survive a variety of attacks and can be used as reference points for both watermark embedding and detection. The normalized image of an image (object) is nearly invariant with respect to rotations. As a result, the watermark detection task can be much simplified when it is applied to the normalized image. Simulation results show that our scheme can survive low quality JPEG compression, color reduction, sharpening, Gaussian filtering, median filtering, row or column removal, shearing, rotation, local warping, cropping, and linear geometric transformation.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT008811831
http://hdl.handle.net/11536/54779
显示于类别:Thesis


文件中的档案:

  1. 183101.pdf
  2. 183102.pdf
  3. 183103.pdf
  4. 183104.pdf
  5. 183105.pdf
  6. 183106.pdf
  7. 183107.pdf
  8. 183108.pdf
  9. 183109.pdf
  10. 183110.pdf
  11. 183111.pdf
  12. 183112.pdf
  13. 183113.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.