完整後設資料紀錄
DC 欄位語言
dc.contributor.author蔡宜勳en_US
dc.contributor.authorTsai, Yi-Shiun.en_US
dc.contributor.author林松山en_US
dc.contributor.authorLin, Song-Sun.en_US
dc.date.accessioned2014-12-12T02:10:58Z-
dc.date.available2014-12-12T02:10:58Z-
dc.date.issued1992en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT810507007en_US
dc.identifier.urihttp://hdl.handle.net/11536/57107-
dc.description.abstract本論文是研究競爭模式中的兩個系統, 其一為不具擴散作用的動力系統,
另者為具擴散作用的穩定系統.我們考慮此系統的非常數共存解的存在性
與收斂區域, 先作線性穩定性分析再求其數值解.
In this thesis our goal is to study the two syatems of Lotka-
Volterra-Gause Competition Model. One is dynamical system
without diffusion, and the other is steady state system with
diffusion. We dicuss the stabilities of their equilibrium. We
consider existence of non-constant coexitence solutions and
domain of attraction. We first analyze this system by linear
stability analysis to find the local stability. Then, we use
Taylor expansion to obtain numerical solutions.
zh_TW
dc.language.isoen_USen_US
dc.subject競爭, 收斂區域, 擴散, 成長係數.zh_TW
dc.subjectcompetition , domain of attraction, diffusion , groth rate.en_US
dc.title競爭系統的收斂區域zh_TW
dc.titleDomain of Attraction of Competitive Systemen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文