完整後設資料紀錄
DC 欄位語言
dc.contributor.author蔡宜勳en_US
dc.contributor.authorTsai, Yi-Shiun.en_US
dc.contributor.author林松山en_US
dc.contributor.authorLin, Song-Sun.en_US
dc.date.accessioned2014-12-12T02:10:58Z-
dc.date.available2014-12-12T02:10:58Z-
dc.date.issued1992en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT810507007en_US
dc.identifier.urihttp://hdl.handle.net/11536/57107-
dc.description.abstract本論文是研究競爭模式中的兩個系統, 其一為不具擴散作用的動力系統, 另者為具擴散作用的穩定系統.我們考慮此系統的非常數共存解的存在性 與收斂區域, 先作線性穩定性分析再求其數值解. In this thesis our goal is to study the two syatems of Lotka- Volterra-Gause Competition Model. One is dynamical system without diffusion, and the other is steady state system with diffusion. We dicuss the stabilities of their equilibrium. We consider existence of non-constant coexitence solutions and domain of attraction. We first analyze this system by linear stability analysis to find the local stability. Then, we use Taylor expansion to obtain numerical solutions.zh_TW
dc.language.isoen_USen_US
dc.subject競爭, 收斂區域, 擴散, 成長係數.zh_TW
dc.subjectcompetition , domain of attraction, diffusion , groth rate.en_US
dc.title競爭系統的收斂區域zh_TW
dc.titleDomain of Attraction of Competitive Systemen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文