标题: | 临界系统之稳定化及非线性系统稳定区间之估测 Stabilization of Critical Systems and Estimated Domain of Attraction for Nonlinear Systems |
作者: | 李庆鸿 Ching_Hong Lee 廖德诚 Dr. Der-Cherng Liaw 电控工程研究所 |
关键字: | 非线性系统, 李亚普诺夫函数, 临界系统;Nonlinear system, Lyapunov Function, Critical system |
公开日期: | 1993 |
摘要: | 本篇论文之主要目的在探讨临界系统(Critical Systems)的稳定化与非线 性系统稳定区间(Domain of Attraction)之估测。首先考虑临界系统之稳 定化问题,其目的在于设计一适当的回授控制法则保证临界系统之稳定, 近年来多位学者已利用``中央流型简化法则" (Center Manifold ormula) 来作设计本篇论文中亦应用中央流型简化法则来设计临界系统之控制信号 ,以达成系统稳定化之目的。本论文中主要考虑系统之线性化模式具有一 简单零特征根 或一对纯虚数的特征根之临界系统。对于系统稳定区间之 估测而言,我们针对一线性部份为可控制且非时变之非线性系统,提出一 个简易的演算法则以求得此一系统的稳定区间。此演算法则主要应用系统 之李亚普诺夫矩阵方程式(Lyapunov Matrix Equation)之建立,进而利用 方程式之特性以估测系统之稳定区间。此外我们利用类似的建构法则估测 具有一简单零特征根之临界系统的稳定区间。 Issues of the stabilization for critical system and the estimation of domain of attraction for autonomous nonlinear systems are presented in this thesis. The center manifold reduction is applied to design the stabilizing control laws for nonlinear critical systems, specifically, for the systems whose linearization possesses a simple zero eigenvalue or a pair of simple pure imaginary eigenvalues. The design involves the application of center manifold reduction, normal form transformation and stability criterion. In the topic of the domain of attraction, we present theoretical analysis and computational methods for estimating the attraction region of locally stable (or stabilizable) nonlinear systems. This is achieved by the construction of Lyapunov function for the nonlinear systems. To treat the high order term of nonlinear dynamics as perturbation of linear system, we propose methods to estimate the attraction region. Numerical results are given to demonstrate the applications. Furthermore, an algorithm is also proposed to estimate the domain of attraction for the critical systems whose linearized model possesses one simple zero eigenvalue. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT820327042 http://hdl.handle.net/11536/57759 |
显示于类别: | Thesis |