Full metadata record
DC FieldValueLanguage
dc.contributor.author林富雄en_US
dc.contributor.authorFu-Xiong Linen_US
dc.contributor.author荊宇泰en_US
dc.contributor.authorDr. Yu-Tai Chingen_US
dc.date.accessioned2014-12-12T02:12:02Z-
dc.date.available2014-12-12T02:12:02Z-
dc.date.issued1993en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT820394053en_US
dc.identifier.urihttp://hdl.handle.net/11536/57953-
dc.description.abstract在以 hypertext 為架構的網路教學系統中,記錄所有學生的 學習路徑。給定一條路徑,找出和它最接近的。我們以有向圖表示hyp ertext,而兩條學習路徑間的相似性由二者間的最長共同子序列決 定。當 hypertext 中無迴圈時,我們找出一種可快速比對學 習路徑的方法。在一般狀況下,介紹了一些可加速比對的方法,並討論學 習路徑的表示法。在討論過程中,找出許多學習路徑的屬性。借此,我們 可更精確的定出學習路徑間的相似性或差異性,亦能運用分群法得到學生 的學習形態以供分析。 In a network oriented hypertext tutoring system, we record users' browsing trails. They are called learning paths. Given a path, we want to find the most similar one from the others. Hypertext is usually represented by a directed graph (digraph) and a learning path is represented by the path generated by traversing the digraph. The similarity of two learning paths is defined by longest common subsequence (LCS). In an acyclic hypertext, we develop a method to compute the LCS efficiently. Many matching techniques and attributes of a learning path are introduced. Attributes of learning paths are used to define metrics. Once we know the distance of any pair of learning paths, we can get students' learning patterns by applying clustering methods.zh_TW
dc.language.isoen_USen_US
dc.subject學習路徑;超文系統;距離函數zh_TW
dc.subjectLearning Paths; hypertext; metricen_US
dc.title電腦輔助學習系統中學生學習路徑比對zh_TW
dc.titleLearning Paths Matching in a Hypertext Tutoring Systemen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
Appears in Collections:Thesis