標題: | 半導體量子井雷射元件及材料之研究 Studies of Semiconductor Quantum Well Lasers and Their Material Properties |
作者: | 曾堅信 Jian-Shihn Tsang 李建平 Chien-Ping Lee 電子研究所 |
關鍵字: | 半導體,雷射,量子井;semiconductor, laser, quantum well |
公開日期: | 1994 |
摘要: | 本論文的目的在於分析與研究半導體量子井雷射的元件結構、元件特性與 元件製作,以及相關材料技術的開發。在元件分析及製作方面,我們模擬 並製作出具有低起始電流密度和小遠遠場角度的 0.98 微米波長扭曲層單 量子井雷射元件。在光侷限層是具有鋁莫耳分率為 0.4 的砷化鋁鎵,且 漸變光導層為 0.1 微米厚度時,此雷射元件所獲得的最低起始電流密度 為 207 A/㎝2 且其遠場角度為 27度。另外,我們藉由引入吸收區於雷射 陣列中,成功地製作出可在基模操作的雷射陣列。同時,我們利用p-i-n- i-n 的結構,成功地將量子井雷射和多量子井紅外線偵測器垂直積體化。 在相關材料技術的開發上,我們發現適量 (~1x1019 cm-3) 的銦原子摻雜 在量子井雷射之砷化鋁鎵光導層中,可使雷射的臨界電流密度顯著改善。 其改善的原因是高遷移率的銦原子導致鎵空穴的濃度降低所致。另外,我 們也成功地發展出無雜質的成份混合技術。此技術是藉由低溫砷化鎵磊晶 膜中所含的鎵空穴來加速成份混合的速率。在此研究中,我們發現磊晶膜 愈厚,成份混合的速率愈快; 磊晶膜成長在超晶格結構上方比成長在底部 能更有效率的加快混合速率。同時,我們亦成功地發展出選擇性蝕刻技術 以利未來的應用。此混合技術也成功地運用在不同材料系列上,如砷化銦 鎵╱砷化鎵超晶格結構。在研究其混合機制時,擴散方程式及薛丁格方程 式被用來計算量子井結構的成份分布及其受熱後能階的變化。由計算所得 之缺陷的活化能可可知:低溫砷化鎵磊晶膜中的鎵空穴確實是引起成份混 合的原因。 In this disertation, we study the device performance and the related material technologies of semiconductor quantum well lasers. The optimum structure for 980nm laser has the Al mole fraction of 0.4 and the guiding layer thickness of 100 nm. The threshold current density is 207 A/cm^2 and the far field angle is 27 degree. A proper amount of In atoms doping in the AlGaAs guiding layers has been found to reduce the threshold current due to the reduction of the group III vacancies. The vertical p- i-n-i-n structure was used to integrate the quantum well laser and the quantum well infrared photodetector. Compositional disor- dering of AlGaAs/GaAs superlattice has been observed by PL and SIMS measurement. It was found that LT- GaAs layer grown on top of the superlattice is more effective in causing disordering than the LT-GaAs layer grown on the bottom. The amount of disordering increases with the thickness of the LT- GaAs layer. A selective disordering process has been successfully developed by using a patterned LT-GaAs cap layer. Besides the AlGaAs /GaAs super- lattice, the use of the LT-GaAs cap layer to enhance the disor- dering of the InGaAs/GaAs superlattice has also been studied. From the theoretical simulations, Ga-vacancy-enhanced inter- diffusion was found to be the mechanism underlying the observed intermixing. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT830430020 http://hdl.handle.net/11536/59204 |
Appears in Collections: | Thesis |