Title: 傳輸線觸波技術與基體觸發技術在靜電放電保護電路上的分析及設計
The Design and Analysis of Electrostatic Discharge Protection Devices and Circuits Using Transmission-Line-Pulsing Technique and Substrate-Triggering Technique
Authors: 陳東暘
Chen, Tung-Yang
吳重雨, 柯明道
Chung-Yu Wu, Ming-Dou Ker
電子研究所
Keywords: 傳輸線觸波技術;傳輸線觸波產生器;基體觸發技術;靜電放電;二次崩潰;Transmission Line Pulsing Technique;Transmission Line Pulsing Generator (TLPG);Substrate-Triggering Technique;Electrostatic Discharge;Secondary Breakdown
Issue Date: 1996
Abstract: 在製程技術不斷精進的今日,元件線寬已到達了深次微米的領域,
在0.35 um,0.25 um甚至到0.18 um的製程下,CMOS積體電路因靜電放電
而損傷的問題越來越嚴重。一方面為了解靜電放電防護元件之物理特性,
一方面更為能在晶片製作完成之初,能先了解產品之靜電放電的承受能力
,因此在先進國家中,傳輸線觸波產生器已被架設用來量測元件之二次崩
潰點,並和靜電放電標準測試模式互相參照比較,由理論的探討中,可得
知其關係為正比之線性關係。在本論文中,我們架設了台灣本土的第一套
傳輸線觸波產生器,並用來量測及研究靜電放電防護元件的二次崩潰特性
。藉由對元件二次崩潰特性的了解,我們提出了基體觸發的技術,用來提
昇深次微米製程技術下,靜電放電防護電路的防護能力及效果。由實驗的
分析中可知,利用基體的偏壓可提供靜電放電保護電路更有效的防護能力
。在本論文中,即利用此種基體觸發技術設計出四種不同元件結構的保護
電路,並利用四邊形元件的佈局設計方式來實現這四種靜電放電防護元件
。在此四種基體觸發靜電放電防護電路中,分別利用了水平寄生雙載子電
晶體及垂直寄生雙載子電晶體,以及以一般金氧半場效電晶體的結構與隔
絕氧化層式電晶體的結構方式來設計,而設計出相當節省面積的靜電放電
保護元件。這四種基體觸發靜電放電防護電路已完成晶片製作於-0.6um
CMOS製程中,實驗結果顯示,以雙重雙載子電晶體設計的保護電路在單位
佈局面積下,其對靜電放電的保護能力比以傳統利用NMOS元件的保護電路
高出兩倍。本論文之研究成果,即將發表在IEEE的國際學術研討會上,並
已進行專利的申請。
In the advanced deep-submicron CMOS technology, it is more
difficult to prevent damages from the ESD (Electrostatic
Discharge) stresses. To understand the physical characteristics
and ESD robustness of protection devices in the wafer level, a
transmission line pulsing generator (TLPG) system had been set
up in several advanced companies to measure the secondary
breakdown characteristics of the protection devices. The
relationship between the secondary breakdown current and the ESD
level of the ESD protection devices is a linear function. In
this thesis, the first transmission line pulsing generator
system in Taiwan has been set up and used to measure and analyze
the secondary breakdown characteristics of the ESD protection
devices. Based on the understanding on the secondary breakdown
characteristics of the protection devices, a substrate-
triggering technique has been developed in this thesis and used
to improve the protection efficiency of the ESD protection
circuits in the deep-submicron CMOS technologies.From the
experimental measurement results, the substrate bias can
effectively increase the secondary-breakdown current of the ESD
protection devices. Through suitable circuit design to apply the
substrate bias, the substrate-triggering technique has been
proposed in this thesis to improve ESD robustness of the ESD
protection circuits for deep-submicron CMOS IC's. In this
thesis, four new device structures by using the proposed
substrate-triggering technique are designed and investigated for
power-rail ESD clamp circuits. The multiple-cell square-type
layout concept is also applied to realize the four ESD
protection devices to improve their uniform turn-on behaviors. A
test chip to verify the efficiency of ESD clamp circuits has
been designed and fabricated in a 0.6-□m CMOS process. The
experimental results have confirmed that the double-BJT
structure with the substrate-triggering technique can provide
200% higher ESD robustness in per unit layout area than that of
the traditional design with the NMOS device.The design and
experimental results will be presented in the IEEE International
ASIC Conference and submitted for U.S.A. and R.O.C. patents.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850428059
http://hdl.handle.net/11536/61928
Appears in Collections:Thesis