標題: 預定均曲率之球面
Spheres with Prescribed Mean Curvature
作者: 蕭勝中
Shiau, Shenq-Jong
許義容
Hsu, Yi-Jun
應用數學系所
關鍵字: 均曲率;球面
公開日期: 1997
摘要: 在這篇論文,我們建立了將n維球面送到n+1維球面的一個預定均曲率H之嵌入的存在性。在此,Y是n維球面上的一條曲線 ,而這亦是n維球面上擬線性橢圓微分方程的問題。我們主要學習此方程的Schauder型估計 ,在H擁有充份的條件下,我們找到了最大值和梯度的估計,運用連續方法,我們得到了存在性的結果。
In this paper we establish the existence of an embedding Y:Sn→ Sn+1 with the prescribed mean curvature H. In the case of Y is a graph on Sn, this problem is a quasilinear elliptic equation on the sphere Sn. The key to our study of this equation is the Schauder-type estimates. Under certain conditions on H, we find a maximum estimate and a gradient estimate. Based on the continulity method, we obtain the result of existence.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT863507011
http://hdl.handle.net/11536/63585
顯示於類別:畢業論文