Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Kuo Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:08:11Z-
dc.date.available2014-12-08T15:08:11Z-
dc.date.issued2009-12-01en_US
dc.identifier.issn0378-620Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00020-009-1713-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/6380-
dc.description.abstractA Toeplitz operator T(phi) with symbol phi in L(infinity)(D) on the Bergman space A(2)(D), where D denotes the open unit disc, is radial if phi(z) = phi(vertical bar z vertical bar) a. e. on D. In this paper, we consider the numerical ranges of such operators. It is shown that all finite line segments, convex hulls of analytic images of D and closed convex polygonal regions in the plane are the numerical ranges of radial Toeplitz operators. On the other hand, Toeplitz operators T(phi) with phi harmonic on D and continuous on (D) over bar and radial Toeplitz operators are convexoid, but certain compact quasinilpotent Toeplitz operators are not.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectradial Toeplitz operatoren_US
dc.subjectBergman spaceen_US
dc.subjectconvexoid operatoren_US
dc.titleNumerical Ranges of Radial Toeplitz Operators on Bergman Spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00020-009-1713-yen_US
dc.identifier.journalINTEGRAL EQUATIONS AND OPERATOR THEORYen_US
dc.citation.volume65en_US
dc.citation.issue4en_US
dc.citation.spage581en_US
dc.citation.epage591en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000272616300008-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000272616300008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.