標題: | 半線性橢圓方程之解的存在性與多重性 Existence and Multiplicity of Solutions for Semi-linear Elliptic Equations |
作者: | 施逸文 Yi-Wen Shih 林松山 Song-Sun Lin 應用數學系所 |
關鍵字: | 對稱破壞;Symmetry-breaking |
公開日期: | 1998 |
摘要: | 在第一部份, 考慮在圓柱體上半線性橢圓方程之解的對稱破壞, 令圓柱體長度為參數, 證明會產生對稱破壞在一群特定臨界值.
在第二部份, 考率慮非線性項為類線性之半線性橢圓方程, 解的存在性, 唯一性, 以及這些解的行為. In part 1 we study the problem of symmetry-breaking of positive symmetric solutions of a semi-linear elliptic equation on finite cylinders with mixed type boundary conditions in two dimentions. Taking the length as a bifurcation parameter, we prove that there are asymmetric bifurcations at certain critical numbers, and obtain some global results. In part 2 we consider some semi-linear elliptic equations with asymptotic linear non-linearity and show the existence, uniqueness, and asymptotic behavior of these solutions. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT870507002 http://hdl.handle.net/11536/64845 |
Appears in Collections: | Thesis |