標題: 半線性橢圓方程之解的存在性與多重性
Existence and Multiplicity of Solutions for Semi-linear Elliptic Equations
作者: 施逸文
Yi-Wen Shih
林松山
Song-Sun Lin
應用數學系所
關鍵字: 對稱破壞;Symmetry-breaking
公開日期: 1998
摘要: 在第一部份, 考慮在圓柱體上半線性橢圓方程之解的對稱破壞, 令圓柱體長度為參數, 證明會產生對稱破壞在一群特定臨界值. 在第二部份, 考率慮非線性項為類線性之半線性橢圓方程, 解的存在性, 唯一性, 以及這些解的行為.
In part 1 we study the problem of symmetry-breaking of positive symmetric solutions of a semi-linear elliptic equation on finite cylinders with mixed type boundary conditions in two dimentions. Taking the length as a bifurcation parameter, we prove that there are asymmetric bifurcations at certain critical numbers, and obtain some global results. In part 2 we consider some semi-linear elliptic equations with asymptotic linear non-linearity and show the existence, uniqueness, and asymptotic behavior of these solutions.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870507002
http://hdl.handle.net/11536/64845
Appears in Collections:Thesis