标题: 半线性椭圆方程之解的存在性与多重性
Existence and Multiplicity of Solutions for Semi-linear Elliptic Equations
作者: 施逸文
Yi-Wen Shih
林松山
Song-Sun Lin
应用数学系所
关键字: 对称破坏;Symmetry-breaking
公开日期: 1998
摘要: 在第一部份, 考虑在圆柱体上半线性椭圆方程之解的对称破坏, 令圆柱体长度为参数, 证明会产生对称破坏在一群特定临界值.
在第二部份, 考率虑非线性项为类线性之半线性椭圆方程, 解的存在性, 唯一性, 以及这些解的行为.
In part 1 we study the problem of symmetry-breaking of positive symmetric solutions of a semi-linear elliptic equation on finite cylinders with mixed type boundary conditions in two dimentions. Taking the length as a bifurcation parameter, we prove that there are asymmetric bifurcations at certain critical numbers, and obtain some global results.
In part 2 we consider some semi-linear elliptic equations with asymptotic linear non-linearity and show the existence, uniqueness, and asymptotic behavior of these solutions.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT870507002
http://hdl.handle.net/11536/64845
显示于类别:Thesis