标题: | 半线性椭圆方程之解的存在性与多重性 Existence and Multiplicity of Solutions for Semi-linear Elliptic Equations |
作者: | 施逸文 Yi-Wen Shih 林松山 Song-Sun Lin 应用数学系所 |
关键字: | 对称破坏;Symmetry-breaking |
公开日期: | 1998 |
摘要: | 在第一部份, 考虑在圆柱体上半线性椭圆方程之解的对称破坏, 令圆柱体长度为参数, 证明会产生对称破坏在一群特定临界值. 在第二部份, 考率虑非线性项为类线性之半线性椭圆方程, 解的存在性, 唯一性, 以及这些解的行为. In part 1 we study the problem of symmetry-breaking of positive symmetric solutions of a semi-linear elliptic equation on finite cylinders with mixed type boundary conditions in two dimentions. Taking the length as a bifurcation parameter, we prove that there are asymmetric bifurcations at certain critical numbers, and obtain some global results. In part 2 we consider some semi-linear elliptic equations with asymptotic linear non-linearity and show the existence, uniqueness, and asymptotic behavior of these solutions. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT870507002 http://hdl.handle.net/11536/64845 |
显示于类别: | Thesis |