標題: 以有機金屬氣相磊晶法成長氮砷化銦鎵之研究
The Study of InGaNAs Growth by Metalorganic Chemical Vapor Deposition
作者: 邱志鴻
chih hung chiu
李威儀
Wei-I Lee
電子物理系所
關鍵字: 有機金屬氣相磊晶法;氮砷化銦鎵;量子井;MOCVD;GaNAs;InGaNAs;Quantum Well
公開日期: 2000
摘要: 以有機金屬氣相磊晶法成長InGaNAs之研究 研究生:邱志鴻 指導教授:李威儀博士 國 立 交 通 大 學 電子物理研究所 中文摘要 在本論文中,我們使用低壓有機金屬氣相磊晶法(LP-MOCVD),在n-type的GaAs基板上成長不同結構的GaNAs和InGaNAs長波長材料,我們使用DMHy、TEGa、TMIn、AsH3以及TBAs做為氮(N)、銦(In)、鎵(Ga)以及砷(As)的反應源。而磊晶與量測的結果分為GaNAs厚膜、InGaNAs厚膜及InGaNAs量子井。首先,在GaNAs厚膜方面,我們利用雙晶X射線繞射法與RADS X-ray模擬軟體仔細討論了磊晶參數對N含量的關係,發現成長溫度和Ⅴ/Ⅴ比對N含量影響很大,其中當成長溫度和Ⅴ/Ⅴ比分別為550℃與0.77時,N含量可以高達3.93%。另外,從成長速率與N含量的關係比較出,N含量隨著成長速率變慢而減少,但是當TEGa流量大到某個程度,結果卻是相反。其次是InGaNAs厚膜結構,由吸收光譜所量測的結果可知,適當的改變成長溫度和Ⅴ/Ⅴ比,就可輕易成長低能隙之InGaNAs材料,吸收光譜波長可達1262.0nm,但是材料的發光品質卻非常的不好。 由InGaNAs厚膜之結構,我們更進一步的成長InGaNAs量子井,並在成長過程中進行熱退火步驟,可以有效地磊晶高品質的InGaNAs材料,室溫PL波長在1200nm左右,半高寬為48.6meV,其In和N的含量分別為23%與0.54%。最後,我們為了降低成長溫度來增加InGaNAs量子井之N含量,五族的反應物源由原先的AsH3改為低溫分解率較高之TBAs,從室溫和低溫PL所量測的圖形發現,在成長溫度為520℃~560℃之間,可以輕易成長高品質的InGaNAs量子井。
The Study of InGaNAs Growth by Metalorganic Chemical Vapor Deposition Student: Chih-Hung Chiu Advisor: Dr. Wei-I Lee Institute of Electrophysics National Chiao Tung University Abstract GaNAs layers and InGaNAs layers with good structure quality and surface morphology has successfully grown on n-types GaAs substrate using low-pressure metal organic chemical vapor deposition. In this work, DMHy (dimethylhydrazine), TEGa (triethylgallium), TMIn, AsH3 and TBAs are used for N (nitrogen), In, Ga (gallium), and As(arsenic) sources. In consequence of epitaxy and measurement are GaNAs films, InGaNAs films and InGaNAs quantum well(QW). First, in order to find the relation between the epitaxy parameter and nitrogen content, which was used Double Crystal X-ray diffraction(DCX-ray) and RADS X-ray analogous software. Obviously, GaNAs layer growth temperature and Ⅴ/Ⅴratio have a significant influence on nitrogen content. When GaNAs layer growth temperature keep at 550℃and theⅤ/Ⅴratio is 0.77, which nitrogen content has grown more than 3.93%. In the other hand, if growth ratio goes slowly, nitrogen content decreases. But when the flow of TEGa is sufficient, as a result of N content is contrary. Alternately, according to the absorption spectrum measurement to analyze the InGaNAs films' structure. We changed growth temperature and Ⅴ/Ⅴratio properly, then discovered band gap energy was grown easily. The absorption spectrum wavelength can up to 1260nm, but the quality of photoluminescence did poor. Furthermore, we grown InGaNAs QWs by adding the step "initial-annealing" of the samples and also get high quality samples. The PL is an 1200nm wavelength and 48.6meV height-width at the room temperature, which included in content of 23% and N content of 0.54%. Finally, in order to decrease the growth temperature to increase the N content within the InGaNAs QWs, using five-tribe sources TBAs with temperature, high dissolving to instead of TBAs. No matter at room temperature or at low temperature, the PL figures show the same result. It's easy to grow high quality InGaNAs quantum wells at the temperature is during 520℃ to 560℃.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT890429012
http://hdl.handle.net/11536/67254
Appears in Collections:Thesis