标题: 高介电系数闸极介电层在金氧半电晶体中之电特性及其可靠度研究
A Study of Electrical Characteristics and Reliability in CMOSFETs with High-κ Gate Dielectrics
作者: 陈世璋
Chen, Shih-Chang
罗正忠
简昭欣
Jen-Chung Lou
Chao-Hsin Chien
电子研究所
关键字: 高介电系数;介电层;电荷捕捉/散逸;氧缺陷;脉冲量测;正偏压高温不稳定性;负偏压高温不稳定性;可靠度;High-k;Dielectrics;Charge Trapping/De-trapping;Oxygen Vacancy;Pulse IV;PBTI;NBTI;Reliability
公开日期: 2008
摘要: 随着互补式金氧半电晶体(CMOSFETs)元件尺寸跟随着摩尔定律(Moore’s law)持续微缩,传统的二氧化矽(SiO2)闸极介电层(Gate Dielectrics)将遭遇极大的直接穿遂漏电流(Direct Tunneling Leakage Current)导致元件特性失效及可靠度衰退。因此,高介电系数介电层(High-□ Dielectrics)成为取代二氧化矽作为下一新世代闸极介电层最有潜力的候选。然而使用高介电系数介电层也将伴随而至数个严重困难,包含了材料上的热稳定性(Thermal Stability)、费米能阶锁定效应(Fermi-Level Pinning Effect)、通道内载子移动率的衰减(Mobility Degradation)、以及电荷被高介电系数介电层内之缺陷捕捉/散逸之现象(Charge Trapping/De-trapping)……等等。由于介电质的热稳定性、费米能阶锁定效应、以及通道内载子移动率的衰减已分别可以藉由使用其它元素的掺杂、金属闸极的应用、以及利用应力效应来改善其影响,而电荷在高介电系数介电层内被其缺陷捕捉/散逸之现象至今仍为尚在解决之急迫困难。
由于本论文主要是探讨高介电系数介电质的电特性及其可靠度研究,针对高介电系数介电质所遭遇的问题,我们不仅在制程上寻求可以改善的适当方法,也透过量测上有系统的分析来瞭解电荷的捕捉/散逸效应其相关的现象及其物理机制。本论文一开始的首章,我们将说明半导体制程上为何需要应用高介电系数介电层,以及在长年相关研究之中所发现的几个主要关键问题。第二章,我们将利用制程技术针对高介电系数介电层的几个问题来加以改善元件特性。包括:(a)在与矽基板之界面特性研究中—我们提出利用臭氧水成长超薄氧化层(Ozone Oxide)的方法来当作在高介电系数介电质以及矽基板之间的中间介电层,有效制作出具有能改善界面特性、抵抗大量的直接穿遂漏电、以及有效减少电荷捕捉/散逸效应,并提升元件可靠度之基底介电层(Base Oxide)。(b) 在针对高介电系数介电质本体内众多的本质缺陷—我们提出利用氟离子植入法(Fluorine Incorporation)有效地修补界面其本体内缺陷,降低电荷捕捉/散逸效应,并提升元件之电特性及其可靠度。(c)在应用高介电系数介电质之后所造成的载子移动率衰减—我们提出利用舒展性应力(Tensile Strain)在n型金氧半电晶体(nMOSFETs)上进行改善,有效的使元件的驱动电流提升,并分析出应力效应的使用对元件电特性及其可靠度之影响。此外,我们也从实验中验证电荷的捕捉效应将主导n通道及p通道之高介电系数介电层元件的可靠度特性。
在第三章中,为了瞭解在高介电系数介电层元件中的电荷捕捉效应(Charge Trapping Effect),我们仔细的研究它的物理机制及其对元件可靠度之影响。我们对n型金氧半电晶体(nMOSFETs),在正电压及严苛温度条件下,分析元件可靠度之不稳定性变化 (Positive Bias Temperature Instability, PBTI)。我们分析出在高介电系数介电层中,电子被其本体缺陷的捕捉效应有着速度上及数量上的差别。在量测上反应比较快的第一群组(0 ~ 1.78 sec)中所发生的捕捉效应我们定义为“快速捕捉”(Fast Trapping),而相对后来的第二群组(1.78 ~ 100 sec)中所看到的捕捉效应我们称做“慢速捕捉”(Slow Trapping)。我们发现在100秒以内的DC量测中,快速捕捉不论在数量上或者对元件可靠度的影响都占了一个非常大的主导性。此外,我们发现在Fowler Nordheim穿遂现象的发生前后,电子由直接穿遂过基底氧化层,进入高介电系数介电层而被其内的浅缺陷捕捉,转变成电子先穿遂到高介电系数介电层的导电带,再被高介电系数介电层内的缺陷所捕捉。并且整个电荷捕捉现象将完全由快速捕捉效应所主导。而经由能阶的计算,我们也发现这些在高介电系数介电层中反映出快速捕捉的浅缺陷,主要是为HfO2中的Vo2+, Vo-, Vo2- 以及晶体边界缺陷 (grain boundary defects)
在第四章中,我们利用与第三章相同的元件及分析方式,在回复电压的条件下对电荷的散逸效应(Charge De-trapping Effect)仔细地进行研究及讨论。在电荷的散逸效应中,同样有着速度上及数量上的差别。反应比较快的散逸效应我们定义为“快速散逸”,而相对较慢的我们称做“慢速散逸”。同样的快速散逸效应在整个电荷回复行为中有着相当大的主导性。此外,我们发现整个电荷散逸效应的能力,主要是由高介电系数介电层中可允许穿遂回矽基板的能阶所决定。
在第五章中,而针对一般DC量测无法精准萃取的快速暂态电荷捕捉/散逸效应,我们也导入具有极短量测时间并可解析数奈秒(ns)下电荷行为之优势的脉冲式量测(Pulse IV Measurement),来正确完整的分析在高介电系数介电层中的电荷捕捉/散逸效应。对几个重要的物理参数,诸如:逼迫电压,逼迫时间,回复电压,以及较严峻的操作温度。我们分别有系统的进行完整的相关研究,并探讨其背后的物理意义。此外,我们也利用脉冲式量测模拟了高介电系数介电层元件在AC电压形式操作下的情况。我们除了发现电荷的捕捉/散逸效应在AC电压形式的操作下,对元件的电特性及可靠度仍有显着的影响。
因此在第六章中,针对元件在连续的电压操作下,我们仔细的讨论电荷捕捉/散逸效应对高介电系数介电层元件的电特性及其可靠度之影响。我们发现在回复电压不足的情况下,被捕捉在高介电系数介电层本体内部的电荷将会持续留存,并累积在下一次电荷捕捉效应之中。而透过一个足够回复电压的条件来分析,我们可以知道整个电荷捕捉/散逸效应是具有回复性。继而证实在小电压逼迫的条件下,并无造成高介电系数介电层中任何额外的缺陷产生,只是重复电荷捕捉/散逸的行为。因此,我们所看到劣化的元件动态可靠度之不稳定性是由于在高介电系数介电层本体中,未能散逸而出的电荷在重复的电荷捕捉/散逸的效应下进行了存留电荷的累积,而非新的缺陷在小电压电性逼迫中产生。如此,我们也映证了电荷的捕捉/散逸现象将对元件连续操作造成显着的影响。
在第七章中,我们对p型金氧半电晶体(pMOSFETs),在负电压及严苛温度条件下,分析元件可靠度之不稳定性变化(Negative Bias Temperature Instability)。在NBTI的研究中,我们除了分析电洞在高介电系数介电层中的被捕捉特性,也藉由一个奇异的NBTI现象(Anomalous NBTI Behavior),额外发现电子在NBTI的可靠度衰退中也扮演一个不可忽视的角色。因此,当我们在利用NBTI可靠度考量元件的生命周期之时,我们将需要慎重考量电子在p型高介电系数闸极电晶体中的捕捉现象,并用此修正整个元件生命周期的预测。
于高介电系数介电层之可靠度研究中,在考量了电荷的快速暂态行为所带来的影响,我们完整地建立了一个具有通用性的物理模型,并可合理的解释在高介电系数介电层中之电荷捕捉/散逸效应的物理机制。最后,我们也根据这些年来研究高介电系数介电层的经验,针对高介电系数介电层在未来的研究方向提出一些看法。
As the CMOS technology continues to scale down following the Moore’s law, the shrinkage of gate dielectric thickness will suffer the intolerable direct tunneling gate leakage current which leads to degrade the device performance and reliability. High dielectric permittivity gate dielectrics (high-□ gate dielectrics) have been proposed to be the potential candidates to solve these critical issues since their thicker films can be utilized to reduce the large direct tunneling leakage current while maintaining EOT value and the device performances. However, several critical problems such as thermal stability, Fermi-level pinning effect, channel mobility degradation, and charge trapping/de-trapping effects have accompanied with the progress of high-□ gate dielectrics. The thermal stability, Fermi-level pinning effect, channel mobility degradation have been improved through the multi-element incorporation, metal gate process, and application of strain effect, respectively. However, the charge trapping/de-trapping effects are still the major difficulties which are waiting for the effective solutions in the progress of the high-□ gate dielectrics.
For completing the high-□ researches, the aims of this dissertation will not only effectively enhance the related issues of high-□□ devices through appropriately fabrication technologies, but also systematically investigate the dynamics of charge trapping/de-trapping effects and the related physical mechanisms through a variety of electrical characterizations. At beginning, in chapter 1, we will explain the necessary of high-□ gate dielectrics applied on semiconductor fabrication, and further point out several critical issues discovered during related investigations in recent years. In the early stages of this dissertation, we studied the enhancements of device performance through the fabrication technologies. The ozone oxidation has been verified to effectively improve the interfacial properties between high-□□ gate dielectrics and Si-substrate with fine interface properties, low direct tunneling leakage current, and less charge trapping effect. The fluorine incorporation has been confirmed to apparently reduce the high-□ bulk traps and enhance the device performance and reliability. The tensile strain effect has been demonstrated to successfully enhance the n-channel electron mobility. Besides, the charge trapping effect has been verified to dominate the reliability degradation in both nMOSFETs and pMOSFETs with the high-□ gate stack.
For understanding the impacts of charge trapping/de-trapping on the device reliability, the related investigations have been conducted in both nMOSFETs and pMOSFETs through the PBTI and NBTI degradations. In PBTI researches, we have observed the influences of trapping charges at the high-□ bulk trap centers on the associated reliability, and have established a physical model to properly explain the mechanism. Moreover, in NBTI studies, we have not only analyzed the related characteristics of hole trapping in the high-□ bulk, but also discover that the careful considerations of both holes and electrons in NBTI degradation are necessary.
In both charge trapping/de-trapping phenomena, the experimental results have been discussed as the fast transient behavior and slow behavior in the aspects of distinct time respondences. We have found both significantly quantitative and qualitative differences between fast transient behavior and slow behavior. On one hand, the charge trapping behavior has been systematically investigated on the stages of stress voltage and stress time. On the other hand, the charge de-trapping behavior also has been carefully studied through the stress voltage and recovery voltage. From the experimental results, we have constructed a reasonable physical mechanism.
In order to actually realize the charge trapping/de-trapping behaviors, the pulse IV measurement have been applied to monitor the electrical characterizations with the considerations of fast transient behaviors. All of related investigations have been conducted with the critical concerns of fast transient behaviors to further complete the physical mechanism in charge trapping/de-trapping phenomena. In addition, the charge tunneling has been demonstrated to be the predominance in the charge trapping/de-trapping phenomena through less dependence on the variety of temperatures. Further, the AC stress has also been verified to have apparent impacts on the continuing device operation. Therefore, we have built a universal model to appropriately explain the physical mechanisms of charge trapping/de-trapping effects with the important considerations of fast transient behaviors.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009211816
http://hdl.handle.net/11536/67867
显示于类别:Thesis


文件中的档案:

  1. 181601.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.