標題: Possibilistic Shell Clustering of Template-Based Shapes
作者: Wang, Tsaipei
資訊工程學系
Department of Computer Science
關鍵字: Alternating optimization (AO);object detection;possibilistic clustering;progressive clustering;shape detection;shell clustering;template matching
公開日期: 1-八月-2009
摘要: In this paper, we present a new type of alternating-optimization- based possibilistic c-shell algorithm for clustering-template- based shapes. A cluster prototype consists of a copy of the template after translation, scaling, rotation, and/or affine transformations. This extends the capability of shell clustering beyond a few standard geometrical shapes that have been in the literature so far. We use a number of 2-D datasets, consisting of both synthetic and real-world images, to illustrate the capability of our algorithm in detecting generic-template-based shapes in images. We also describe a progressive clustering procedure aimed to relax the requirements for a known number of clusters and good initialization, as well as new performance measures of shell-clustering algorithms.
URI: http://dx.doi.org/10.1109/TFUZZ.2008.924360
http://hdl.handle.net/11536/6886
ISSN: 1063-6706
DOI: 10.1109/TFUZZ.2008.924360
期刊: IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume: 17
Issue: 4
起始頁: 777
結束頁: 793
顯示於類別:期刊論文


文件中的檔案:

  1. 000268527100004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。