完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 王麗雲 | en_US |
dc.contributor.author | Wang, Li-Yun | en_US |
dc.contributor.author | 李榮耀 | en_US |
dc.contributor.author | Lee, Jong-Eao | en_US |
dc.date.accessioned | 2015-11-26T01:04:41Z | - |
dc.date.available | 2015-11-26T01:04:41Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079920501 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/71615 | - |
dc.description.abstract | 在此篇文章中,我們主要在探討理想的單擺運動。首先,藉由多項式去逼近,並探討相對應之方程式,在這之中我們發現黎曼空間的理論是必要的,因此接著介紹如何造出相對應的黎曼空間,並利用Mathematica幫助我們去計算相對應的黎曼空間上的路徑積分及方程式上相關之性質。 再來,介紹橢圓函數的基本性質,我們利用橢圓函數解出原微分方程的實際解、週期及相關性質。 | zh_TW |
dc.description.abstract | In this paper, we study the ideal pendulum equation. First, we study the nonlinear approximation of the exact theory, and the Riemann surface theory is needed. So we study the Riemann surface of genus N in various algebraic cut-structures. We then apply Mathematica to evaluate path integrals on those Riemann surfaces. Secondly, we study the classical Elliptic functions. From which, we are able to solve the exact solution and certain properties of the pendulum motions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 單擺運動 | zh_TW |
dc.subject | 黎曼面 | zh_TW |
dc.subject | 橢圓函數 | zh_TW |
dc.subject | pendulum motion | en_US |
dc.subject | Riemann surface | en_US |
dc.subject | Elliptic function | en_US |
dc.title | 在E型代數結構下之N相黎曼空間的單擺運動之確切理論與數值運算 | zh_TW |
dc.title | The Exact Theory and Numerical Computations of Pendulum Motions on Riemann Surface of Genus N with Cut-Structure of Type E | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系數學建模與科學計算碩士班 | zh_TW |
顯示於類別: | 畢業論文 |