標題: 隱式最近點方法求解在變動曲面上的對流擴散方程
An implicit closest point method for solving convection-diffusion equations on a moving surface
作者: 成澤仕軒
Narisawa, Shinoki
賴明治
Lai, Ming-Chih
應用數學系所
關鍵字: 對流擴散方程;變動曲面;最近點方法;水平集方法;convection-diffusion equation;moving surface;closest point method;level set method
公開日期: 2012
摘要: 本文提出一個數值計算方法去求解變動曲面上的對流擴散方程。利用水平集函數捕捉變動曲面。根據最近點方法,利用最近點將對流擴散方程延拓到曲面附近的小區域,並且在這小區域上用Crank-Nichoson方法求解嵌入方程。
We propose a numerical method to solving convection-diffusion equation on a moving surface. We use the level set function to capture the deforming surface. Based on the closest point method, we extend the convection-diffusion equation into a small neighborhood of the surface by closest point, and use Crank-Nicolson scheme to solving the embedding PDE on the neighborhood of the surface.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070052207
http://hdl.handle.net/11536/71711
Appears in Collections:Thesis


Files in This Item:

  1. 220701.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.