Full metadata record
DC FieldValueLanguage
dc.contributor.author蔣宜津en_US
dc.contributor.authorJiang, Yi-Chinen_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2015-11-26T01:04:25Z-
dc.date.available2015-11-26T01:04:25Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079922504en_US
dc.identifier.urihttp://hdl.handle.net/11536/72066-
dc.description.abstract此篇論文中,我們學習非線性薛丁格方程的解的函數理論,這些解有開根號的形式。此方程的解存在於N-1相黎曼空間上,所以我們先探討黎曼空間的理論,接著我們學習橢圓函數來解特殊的非線性薛丁格方程的解,並且討論解的相關的性質。zh_TW
dc.description.abstractIn this paper, we study the function theory of the solutions of the nonlinear Schrodinger equation (NLS), and these solutions have the radical forms. Solutions of such equation resides on the the Riemann surface of genus N-1 so we first study the theory of Riemann surface. Then we study the classical elliptic functions to solve some special solutions of NLS and analyze the associated properties.en_US
dc.language.isoen_USen_US
dc.subject非線性薛丁格方程zh_TW
dc.subject橢圓函數zh_TW
dc.subjectNonlinear Schrodinger Equationen_US
dc.subjectElliptic Functionsen_US
dc.title黎曼空間和橢圓函數的理論及其在非線性薛丁格方程上的應用zh_TW
dc.titleThe Theory of Riemann Surfaces and Elliptic Functions with Application to the Nonlinear Schrodinger Equationen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 250401.pdf
  2. 250402.pdf
  3. 250403.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.