完整後設資料紀錄
DC 欄位語言
dc.contributor.author李亞錦en_US
dc.contributor.authorLi, Ya-Chinen_US
dc.contributor.author邵家健en_US
dc.contributor.authorZao, Kar-Kinen_US
dc.date.accessioned2014-12-12T02:37:44Z-
dc.date.available2014-12-12T02:37:44Z-
dc.date.issued2013en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070056704en_US
dc.identifier.urihttp://hdl.handle.net/11536/73329-
dc.description.abstract低密度奇偶檢查碼 (Low-density parity check codes, LDPC codes) 可以透過奇偶檢驗矩陣 (parity-check matrix) 表示,奇偶檢驗矩陣能夠利用 Tanner graph 圖形化顯示,但是效能好的碼從 Tanner graph 觀察不具有特定的結構特性。 本文利用分群演算法分析低密度奇偶檢查碼的結構,利用馬可夫分群演算法 (Markov cluster algorithm) 與模組性分群演算法 (Modularity cluster algorithm) 將 LDPC codes 的 nodes 分類,找到容易形成陷阱集合 (trapping set) 的小 cluster;並且透過網路參數 (Network parameter) 找出與 LDPC codes 解碼過程相關的參數。zh_TW
dc.description.abstractLow-density parity-check (LDPC) codes are defined by a sparse parity-check matrix and can described by tanner graph. But there is no structural property to confirm the performance. We use clustering algorithm to analyze the structure of LDPC codes. We use Markov Cluster Algorithm and Modularity cluster algorithm to group the node of LDPC codes. We find that the small clusters have higher probability to be the trapping set. Also, we find some network parameter can explain the decoding process of LDPC codes.en_US
dc.language.isozh_TWen_US
dc.subject低密度奇偶檢查碼zh_TW
dc.subject網路參數zh_TW
dc.subject馬可夫分群演算法zh_TW
dc.subject模組性分群演算法zh_TW
dc.subject陷阱集合zh_TW
dc.subjectLDPC codesen_US
dc.subjectnetwork parameteren_US
dc.subjectMarkov Cluster algorithmen_US
dc.subjectModularity cluster algorithmen_US
dc.subjecttrapping seten_US
dc.title利用分群演算法分析低密度奇偶檢查碼的結構zh_TW
dc.titleClustering Analysis on the Structure of LDPC codesen_US
dc.typeThesisen_US
dc.contributor.department生醫工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 670402.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。