完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 施哲儒 | en_US |
dc.contributor.author | Shih,Che-Ju | en_US |
dc.contributor.author | 崔秉钺 | en_US |
dc.contributor.author | Tsui, Bing-Yue | en_US |
dc.date.accessioned | 2014-12-12T02:37:58Z | - |
dc.date.available | 2014-12-12T02:37:58Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070050140 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/73418 | - |
dc.description.abstract | 在过去几十年内,提升矽半导体元件的特性的研究已经越来越完整。但是随着元件快速的微缩,以矽做为半导体材料的金氧半场效电晶体很快就会因为物理极限的限制而越来越难继续微缩下去。因此,当前的课题就是发展其他可能方法来解决这个问题。锗由于本身的较高的载子迁移率以及和矽制程有较大的相容性而被视为能取代矽基板做为未来半导体的材料。但是N型参杂在锗基板里面会快速地扩散,所以好的锗浅接面特性不容易达成,此外,由于N型锗与金属界面上,费米能阶会被锁定在接近价带的位置,会产生很大的萧基位能障而导致较大的接触组抗。本论文主要探讨利用镍锗化物接面来形成较浅的接面,并同时降低对N型锗的接触阻抗。 由于镍锗化物的电阻系数较其他金属锗化物来的低,且形成温度也相对较低,所以选用镍锗化物当作接面金属。此外,本论文中使用了两种制程来研究接面特性,其一是形成锗化物之前打入参杂使参杂的离子堆积在界面,另一种是形成锗化物之后打入参杂,接着再退火使参杂离子能够在界面离析出来。 经过形成锗化物之前打入参杂的制程后,在浓度较高的锗基板上植入较浅较高浓度的参杂所形成的镍锗接面特性并不好,主要是因为镍原子扩散到接面的边缘,造成大量的漏电流。然而在形成镍锗化物之前植入氟离子却能够有效的抑制镍原子的扩散而改善漏电流。另一方面来说,若在浓度较高的锗基板上植入较深较低浓度的参杂,其所形成的镍锗接面特性较好,漏电流比前述之镍锗接面来的低。但是若在形成镍锗化物之前植入氟离子反而增进镍原子的扩散进而造成漏电流增加。推测镍原子的扩散深浅主要是靠植入的参杂浓度所产生的缺陷来决定。但在浓度较低的锗基板上植入较浅较高浓度的参杂所形成的镍锗接面都会有好的特性,主要是因为接面深度较深而抑制镍扩散所造成的破坏。而且就形成镍锗化物跟未形成镍锗化物的接面来比较,形成镍锗化物之后的接面,其顺向电流都有明显的增加,是因为在形成镍锗化物时,参杂的离子大量堆积在镍锗化物与锗基板的界面,进而降低接触阻抗。不论是磷参杂还是砷参杂都能看见此现象。 但在只经过形成锗化物之后打入参杂的制程后,由于离析出来的接面深度太浅,受到镍扩散的影响而造成大量的漏电流。因此结合以上这两种制程,先做形成锗化物之前打入参杂的制程然后再打入参杂后退火,能观察到好的镍锗接面特性,且能同时提高顺向电流。最后藉由量测接触电阻来验证此镍锗接面所观察到的电流特性。在单纯经过形成锗化物之前打入参杂的制程的接面,其接触电阻为2x10-5欧姆-平方公分 ; 而再打入参杂后退火的接面能使接触电阻降到2x10-6欧姆-平方公分。 总而言之,与当今发表过的研究相比,本论文利用两种使参杂堆积的制程来达到低接触阻抗、低接面深度、以及好的接面特性。这个结果预期能够改善N型锗基板金氧半场效电晶体的特性。 | zh_TW |
dc.description.abstract | In the past several decades, the research on Si-based devices progresses very fast. Furthermore, the Si-based MOSFETs have been successfully scaled down to 20 nm regime. However, scaling down the devices becomes more and more difficult and reaches the physics limits soon. Therefore, developing another ways to promote the device performance is necessary. Using new semiconducting materials is a way to improve performance. Because germanium has higher mobility and process compatibility for MOSFET fabrication process, germanium is considered to replace Si as the channel material in the future. Nevertheless, the n-type dopant diffusion in germanium is fast so that it is not easy to form shallow n+/p junction, and the high Schottky barrier height at the metal/n-Ge interface causes a high contact resistance due to the Fermi level pinning near the Ge valance band at the interface between metal and germanium. Therefore, the thesis would focus on the forming of shallow n+/p-Ge junction and low resistance metal/n-Ge contact. Because NiGe has the lowest resistivity and low temperature formation, NiGe is selected as the contact metal. The implantation before germanide (IBG) process means ion implantation is performed before germanide formation, and the implantation after germanide (IAG) process means ion implantation is performed after germanide formation. For the IBG junctions fabricated on heavily-doped substrate, very poor junction characteristic is observed by high dose phosphorous ion implantation due to the fast diffusion of Ni by virtue of defects which are generated by ion implantation. Fluorine ion implantation before NiGe formation could effectively suppress Ni diffusion and reduce the leakage current. Moreover, better junction characteristic can be obtained by low dose ion implantation due to the less defects resulting in less Ni diffusion. However, fluorine implantation before NiGe formation would enhance the Ni diffusion to degrade junction characteristic because the fluorine ion implantation induces extra defects. Next, on the lightly-doped substrate, good junction characteristic is more easily to be obtained than on heavily-doped substrate because the deeper junction depth on lightly-doped substrate so that the Ni diffusion would not destroy the junctions. In particular, after NiGe formation, the forward current obviously increases owing to the dopant segregation at the NiGe/Ge interface. Furthermore, either phosphorous or arsenic n+/p junction would have the dopant segregation effect. The arsenic n+/p junctions have relatively low activation concentration inferred by the I-V characteristic. Finally, because the IAG junctions have poor junction characteristic due to the segregated n+ layer is too thin to maintain good n-p junction and the Ni fast diffusion induces large leakage current, the IBG+IAG process is proposed. The IBG+IAG junction could achieve shallow junction depth and raise the forward current at the same time. Furthermore, the measured contact resistance of the IBG junction is about 2x10-5 -cm2 and the lowest contact resistance of IBG+IAG junction is 2x10-6 -cm2.Therefore, this thesis has formed a junction with shallower junction depth, lower leakage current, and lower contact resistance in comparison with previous studies. This achievement is expected to improve the performance of Ge nMOSFETs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 锗基板 | zh_TW |
dc.subject | 镍锗化物 | zh_TW |
dc.subject | 接触阻抗 | zh_TW |
dc.subject | 锗浅接面 | zh_TW |
dc.subject | 参杂层析技术 | zh_TW |
dc.subject | Germanium | en_US |
dc.subject | Nickel germanide | en_US |
dc.subject | Contact resistance | en_US |
dc.subject | Shallow junction | en_US |
dc.subject | Dopant segregation | en_US |
dc.title | 镍锗化物接触之N+-P锗浅接面及接触电阻之研究 | zh_TW |
dc.title | A Study on the Nickel Germanide Contacted N+-P Germanium Shallow Junction and Contact Resistance | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 电子工程学系 电子研究所 | zh_TW |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.