標題: | 具陣列拓樸向量校正之多重訊號分類演算法於多聲源切音與分離 Multiple Source Segmentation and Separation Using MUSIC Algorithm with Calibrated Array Manifold Vector |
作者: | 呂孟瑋 Lu, Meng-Wei 胡竹生 Hu, Jwu-Sheng 工學院聲音與音樂創意科技碩士學位學程 |
關鍵字: | 陣列拓樸向量;多聲源;分離;多重訊號分類演算法;校正;波束形成器;環狀陣列;均勻環型陣列;追蹤;麥克風陣列;Array Manifold Vector;Multiple Source;Separation;MUSIC Algorithm;Calibrated;Beamformer;Ring Array;Uniform Circle Array;Tracking;Microphone Array |
公開日期: | 2013 |
摘要: | 本論文提出一套利用校正過之陣列拓樸向量(Array Manifold Vector),提升多重訊號分類演算法(Multiple Signal Classification)效果在寬頻估測時的準確度,並實現多聲源切音與分離的方法。本方法結合了聲源頻譜與空間分佈資訊,利用機率決策對未知數量聲源方位進行分類,並將不同聲源語音利用波束形成原理進行切音與分離。本方法由於進行了陣列拓樸向量的完善校正,保證在低訊噪比下對多聲源的方位保有相當程度的正確率,且可排除錯誤偵測的聲源方位。 This thesis proposes a system structure for multiple sound sources segmentation and separation using MUSIC (Multiple Signal Classification) algorithm. Using a calibrated array manifold vector, the proposed calibration method improves the accuracy of the MUSIC algorithm for wide-band detections, hence providing high accuracy source segmentation and separation results. The system structure uses a multiple signal classification algorithm to detect the location of sound sources and estimate their spectrum distributions. The multiple sources tracking method is implemented by a probability decision method regarding spatial and spectrum distributions. Using the estimated directivity, multiple sources were extracted from the array signals using beamforming methods. This proposed system structure can track and separate multiple sources at the same time and maintain high detection rate under very low SNR conditions. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070051908 http://hdl.handle.net/11536/73561 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.