标题: | 奈米尺度场效电晶体中电浆子引致长距库仑效应之研究 Plasmons Induced Long-Range Coulomb Effects in Nanoscale FETs |
作者: | 张立鸣 Chang, Li-Ming 陈明哲 Chen, Ming-Jer 电子工程学系 电子研究所 |
关键字: | 场效电晶体;长距库仑效应;迁移率;FET;Long-range Coulomb effect;Mobility |
公开日期: | 2013 |
摘要: | 对未来数位元件的研发而言,了解奈米尺度载子的传输现象至关重要。本文从多晶矽闸极金氧半场效电晶体的迁移率研究出发,在不同温度下进行n型长通道超薄氧化层电晶体的电性量测之后,先藉由研究团队自建之量子计算模拟器准确标定电晶体特征参数,进一步萃取出电子有效迁移率。经由比对来自文献中的通用迁移率(universal mobility)与自建模拟器的迁移率模拟值之后发现,研究样本中的通道表面粗糙度较文献的厚氧化层样本为低。在此前提之下,额外的散射机制必然存在。我们发现此额外散射机制的温度相依性与文献中的介面电浆子散射机制极为接近,且由文献的理论计算结果可知,该机制可显着影响迁移率的氧化层厚度亦与我们的研究样本相符。穿透式电子显微镜照片的介面数位分析结果也支持此观点。 接着针对同样制程条件的元件样本,我们延伸载子迁移率的研究至短通道元件中。考虑源/汲极效应的影响,在标定电晶体参数的工作上,我们采用技术型电脑辅助设计(TCAD)逆向模拟的方式,在各项参数沿用调校过的厂设值的条件之下,拟似在不同温度下量测得到的电流-电压特性,藉以得到近似的掺杂分布。最终目的是希望得到可靠的元件参数,诸如反转层电子密度、源/汲极电阻等等,进而获取真确的电子有效迁移率。经由一系列的分析,我们认为通道长度小于50奈米的短通道元件中,关建的额外散射机制以远距(remote)库仑散射与长距(long-range)库仑效应为主,且在30奈米左右的尺度,后者的主导性将超过前者。 在长距库仑效应的模拟分析中,我们创新应用机率分布的概念进入薛丁格-波以松自洽模拟过程,探讨电位扰动的现象。除了载子均温上升外,临界电压的微幅下降及迁移率的明显降低均可从我们的模拟分析结果中看见。因为载子增温,使得短通道元件中载子速度过冲的现象受到缓和,是效能提升的一大障碍。考虑此效应,我们针对未来世代场效电晶体,以双闸极的结构为蓝本,透过合并使用技术型电脑辅助设计的水动力学(HD)与漂移扩散(DD)传输模型得到饱和驱动电流的预测。我们认为,为了满足国际半导体技术蓝图(ITRS)高效能元件的的设计标准,应力施加和源/汲极电阻的有效下降,是持续以矽作为通道材料的两大条件。 For future device design and manufacturing, understanding of carrier transport in nano scale is stringent. Study on effective mobility extracted from a polysilicon gate metal-oxide-semiconductor field-effect-transistor at different temperatures serves as a starting point of this research. For an ultra-thin gate-oxide nMOSFET, device parameters are characterized through our in-house Schrödinger-Poisson self-consistent quantum simulator and measured electrical characteristics. Then electron effective mobility can be straightforwardly determined and further analyzed. It is found that the surface roughness of the sample under study is smaller than published values for thick-oxide devices. Through temperature dependent analysis, interface plasmon scattering is expected to be the dominant extra scattering mechanism while other candidates are ruled out. Further TEM digitization analysis supports the conclusion for a smoother interface. Second, we extend the mobility analysis to transport study in short channel devices. To take short-channel effect into account, a TCAD inverse modeling technique is utilized. After obtaining the device parameters such as inversion charge density and series source/drain resistance, effective mobility may be determined for further analysis. Within tolerable error margin for application of Matthiessen’s rule, temperature dependence is again examined to identify dominant scattering mechanism. After excluding other possible mechanisms, the remote-Coulomb-scattering and long-range Coulomb effect originating from highly-doped source/drain plasmon excitation are suspected to play significant role in carrier scattering within very short channels. The latter is found to dominate over the former for channel shorter than around 30 to 40 nm. From simulation analysis of long-range Coulomb effect, potential fluctuation within channel is proposed to be simulated through weighted Schrödinger-Poisson self-consistent process. The result shows that both potential fluctuation and carrier heating may bring to mobility degradation. Furthermore, threshold voltage roll-off is also expected. On the other hand, carrier heating is directly linked to the reduction of velocity overshoot since higher electron temperature results in a smaller momentum relaxation time. From such perspective, saturation current drive is predicted for future nodes by the combined usage of TCAD hydrodynamic and drift-diffusion model. It is finally concluded that both strained-Si technology and series source/drain resistance shrinkage are essential for the continuing adoption of Si channel under the requirement of ITRS high-performance standard. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079211502 http://hdl.handle.net/11536/74628 |
显示于类别: | Thesis |