Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 楊展其 | en_US |
dc.contributor.author | Yang, Jan-Chi | en_US |
dc.contributor.author | 朱英豪 | en_US |
dc.contributor.author | 莊振益 | en_US |
dc.contributor.author | 邱博文 | en_US |
dc.contributor.author | 邱雅萍 | en_US |
dc.contributor.author | 陳宜君 | en_US |
dc.contributor.author | Chu, Ying-Hao | en_US |
dc.date.accessioned | 2014-12-12T02:43:07Z | - |
dc.date.available | 2014-12-12T02:43:07Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079818838 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/75351 | - |
dc.description.abstract | 多鐵材料(multiferroic)為同時具有共存的兩個或兩個以上鐵性有序參量(ferroic order parameters)之材料系統。這些共存的有序參量彼此間通常具有相當程度的耦合與交互作用,使得這類的材料具有獨特的物理現象以及應用於下一代電子元件的應用潛力。在眾多的多鐵材料中,鉍鐵氧(或稱為鐵酸鉍)同時具有有序的磁性與相當大的鐵電極化量。此外,鉍鐵氧為室溫之多鐵材料,其具有高居里溫度(Curie Temperature)與高尼爾溫度(Néel Temperature)之特性,在多鐵材料中的扮演相當關鍵的角色。 本研究中利用雷射氧化物分子束磊晶之成長技術調控成長鉍鐵氧的彈性與電性邊界條件,進而成功建構具長程有序的功能性疇壁結構,並製作出第一個鐵電疇壁電晶體,使得我們得以進一步了解疇壁結構的導電機制與磁阻行為。而對鉍鐵氧施壓一定程度的張應力後,可以得到在自然界中未曾發現的鉍鐵氧正交相,其正交相中的鐵電極化,反鐵磁軸向等多鐵性質也在本論文中被仔細地研究。此外,施加了合適程度的壓應力於鉍鐵氧上將可以製作出一介穩定的鉍鐵氧結構,此結構可經由外加電場來控制其靜磁矩的產生位置與方向,是目前極少數可在室溫達到以電場控制磁場的室溫多鐵材料。本論文並進一步地了解其電控磁的起源與介穩定結構的變化,並輔光電子顯微譜進行觀察與驗證。 本研究論文中論述了多鐵體與鉍鐵氧材料的特性與相關研究,包括介紹鉍鐵氧的組成結構與其鐵電與反鐵磁之多鐵特性。本研究中利用雷射氧化物分子束磊晶之成長技術調控成長鉍鐵氧的彈性與電性邊界條件,再進一步利用多樣分析技術對鉍鐵氧的鐵電與反鐵磁性質進行鐵電疇壁結構與反鐵磁區域的分析。本論文亦提出控制多鐵材料性質之目標模型;並展現鉍鐵氧電子元件之結構與其特性,以及以電場控制磁性展現的實際例子。最後簡述多鐵材料的未來發展與展望,為下一世代的電子元件提出可能的新方案。 | zh_TW |
dc.description.abstract | Multiferroics - materials that exhibit coexistence of different ferroic order parameters - have offered a new route to create intriguing functionalities for next generation nanoelectronics. Bismuth ferrite, BiFeO3, is currently the most studied single-phase multiferric, because BiFeO3 is the only room temperature multiferroic in the world to date. In this dissertation, domain engineering of BiFeO3 is explored to create well-controlled domain patterns and desired domain walls, which are used to gain further understanding on the intriguing functionalities of this room-temperature multiferroic. In addition to domain engineering, epitaxial strain engineering is another main focus in this dissertation. The fabrication of newly-developed and non-equilibrium phases of BiFeO3 is achieved by choosing misfit substrates and suitable growth conditions, allowing original properties to be tailored by epitaxial strains. In this dissertation, a new orthorhombic phase of the multiferroic BiFeO3 is stabilized by exerting proper tensile strain, leading to the formation of functional 90o domain walls. On the other hand, with precisely controlled compressive strain, a highly strained BiFeO3 phase is found to exhibit electric controllable magnetism. This dissertation is written to offer a roadmap to reach advanced control on multiferroic BiFeO3, with the hope to explore new opportunities for novel multifunctional devices and nanoelectronics. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 多體材料 | zh_TW |
dc.subject | 鐵酸鉍 | zh_TW |
dc.subject | 疇壁 | zh_TW |
dc.subject | 奈米結構 | zh_TW |
dc.subject | 磊晶薄膜 | zh_TW |
dc.subject | multiferroic | en_US |
dc.subject | BiFeO3 | en_US |
dc.subject | domain wall | en_US |
dc.subject | nanostructure | en_US |
dc.subject | epitaxial thin film | en_US |
dc.title | 多鐵材料鐵酸鉍先進疇壁,結構與功能性之成長,分析與調控 | zh_TW |
dc.title | Advanced Engineering of Multiferroic BiFeO3: A Roadmap from Domain Wall, Structure to Functionalities | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 材料科學與工程學系所 | zh_TW |
Appears in Collections: | Thesis |