完整後設資料紀錄
DC 欄位語言
dc.contributor.author林光暉en_US
dc.contributor.authorKuang-Hui Linen_US
dc.contributor.author石至文en_US
dc.contributor.authorChih-Wen Shihen_US
dc.date.accessioned2014-12-12T02:45:25Z-
dc.date.available2014-12-12T02:45:25Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009222520en_US
dc.identifier.urihttp://hdl.handle.net/11536/76390-
dc.description.abstract類神經網路(neural networks)穩定常態解(stable stationary solution)的數目與記憶能力(memory capacity)有相對應的關係。本篇論文,我們研究遲滯型(with delay)與非遲滯型(without delay)霍普菲爾(Hopfield)神經網路之多重常態解(multiple stationary solutions)及多重週期解(multiple periodic solutions)的存在性與穩定性並估計他們相對應的吸引區域(basin of attraction),我們藉由幾何想法設定適當的參數條件來造就這樣收斂的動態行為。最後,展示兩個數值結果的例子來驗證理論。zh_TW
dc.description.abstractThe number of stable stationary solutions corresponds to the memory capacity for the neural networks. In this presentation, we investigate existence and stability of multiple stationary solutions and multiple periodic solutionsfor Hopfield-type neural networks with and without delays. Their associated basins of attraction are also estimated. Such a convergent dynamical behavior is established through formulating parameter conditions based on a suitable geometrical setting. Finally, two examples are given to illustrate our main results.en_US
dc.language.isozh_TWen_US
dc.subject神經網路zh_TW
dc.subject遲滯型zh_TW
dc.subject多重穩定性zh_TW
dc.subjectneural networksen_US
dc.subjectdelayed equationsen_US
dc.subjectmultistabilityen_US
dc.title遲滯型霍普菲爾神經網路的穩定性zh_TW
dc.titleMultistability for Delayed Hopfield-type Neural Netowrksen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 252001.pdf
  2. 252002.pdf
  3. 252003.pdf
  4. 252004.pdf
  5. 252005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。