标题: | 晶粒尺寸于垂直闸极半导体-氧化矽-氮化矽-氧 化矽-半导体记忆体元件特性变异之研究 Effect of Grain Size on the Performance Variation of the Vertical Gate SONOS Memory Cell |
作者: | 卢立伟 Lu, Li-Wei 崔秉钺 Tsui, Bing-Yue 电子工程学系 电子研究所 |
关键字: | 半导体-氧化矽-氮化矽-氧化矽-半导体;晶粒边界;SONOS;Grain boundary |
公开日期: | 2014 |
摘要: | 在本论文中,我们制备不同晶粒尺寸的垂直闸极之快闪记忆体并且量测不同晶粒尺寸的元件,于初始状态以及在Fowler-Nordheim 写入与抹除机制中之差异。由于垂直闸极的元件,其通道是在侧壁两侧且经过垂直方向的蚀刻,所以在探讨晶粒边界对于元件特性变异之影响时,不同元件表面的粗糙度的差异相较于平面型的元件来的小,因此可以更准确的帮助我们辨别晶粒边界对于元件特性之影响。 在初始状态的元件特性讨论中,我们发现临界电压及次临界摆幅的平均值随通道中的晶粒边界数量变少而变小。而在临界电压及次临界摆幅的变异度上,我们发现两者皆与通道中晶粒边界的数量以及晶粒边界缺陷密度的变异度大小有关。雷射退火的元件拥有较低的晶粒边界缺陷密度变异,所以其导通电压及次临界摆幅变异度由晶粒边界数量主导,随着晶粒边界数量变少,雷射退火的元件变异也变小且愈趋于单晶的元件。而热退火的元件拥有较高的晶粒边界缺陷密度变异,所以当晶粒边界数量变少时,其元件特性由晶粒边界边界缺陷密度变异度主导,元件特性变易仍很大。 在Fowler-Nordheim 写入速度比较中,不同的晶粒尺寸的元件,其写入的速度也不同,当通道中晶粒数量越多,其写入的速度也越快。其原因是晶粒边界有大量的缺陷,在Fowler-Nordheim 写入时,能量低于费米能阶的电子将被晶粒边界缺陷捕捉,使得该处的传导带产生位能障碍相较于没有晶粒边界的地方,有晶粒边界经过的区域其表面的能带弯曲比较小,而由于所加的闸极电压处处相等,所以在晶粒边界处会有较多的电位差落在穿隧氧化层,使得写入的速度更快。 在Fowler-Nordheim写入速度变异度比较中,我们发现Fowler-Nordheim写入速度的变异度和晶粒边界的数量无关,而与不同的通道退火方式进而得到不同的晶粒边界缺陷密度的变异度有关系。相较于雷射退火,以热退火的方式将得到较大的Fowler-Nordheim写入速度变异度,所以我们推测,以热退火的方式会得到比较大的晶粒边界缺陷密度的变异度。 在Fowler-Nordheim 抹除速度比较中,我们发现不同的晶粒尺寸的元件之间的抹除速度并无明显的差异。原因是在抹除机制中是将电洞注入氮化矽层内将其电子中和,而由于电洞的能障大于电子,因此通道中的晶粒边界捕捉电洞使得在落在穿隧氧化层的电压提高进而增强Fowler-Nordheim 抹除的速度的效应相对而言较不显着。 在Fowler-Nordheim抹除速度变异度比较中,我们发现与Fowler-Nordheim写入相同的趋势,且变异度较小,其结论也间接验证了上述的推论,由于电洞的能障大于电子,所以晶粒边界效应对Fowler-Nordheim抹除机制相较起来较不显着。 In this work, we fabricated the vertical gate thin film transistor SONOS (VG TFT SONOS) devices with different channel grain sizes and study the grain boundary effect on IV characteristic in fresh state, Fowler-Nordeim (FN) program speed, FN program state variation, FN erase speed and FN erase state variation. Compared with planer TFT SONOS devices, the channel of VG TFT SONOS devices is fabricated at sidewall and etched during the active region pattern process. The surface of the etched sidewall of VG TFT SONOS devices is supposed to be smoother than the top surface of planer TFT SONOS devices. As a result, the VG TFT SONOS devices can help us study grain boundary effect more precisely and reduce the surface roughness issue. In terms of basic IV characteristic in fresh state, grain boundary containing lots of electron trapping centers increases the surface potential and interface trap density which enlarges the threshold voltage (V_th) and degrades the subthreshold swing (S.S.). As a result, the mean value of V_th and S.S. decrease when the number of grain boundary decreases. Furthermore, the V_th and S.S. variation are related to the number of grain and the grain boundary trap density variation. Because laser annealed poly-Si devices contain lower grain boundary trap density variation, the V_th and S.S variation are dominated by the number of grain. When the number of grain decreases, the V_th and S.S variation of laser annealed poly-Si devices decrease and get close to that of single crystal devices. However, with large grain boundary orientation variation which results in large grain boundary trap density variation, thermal annealed poly-Si devices still exhibit large V_th and S.S variation when the number of grain decreases. For FN program speed comparison, devices with different grain sizes have different program speed. According to our measurement, the program speed is enhanced when the number of grain boundary increases. It is because grain boundary will increase interface trap density and those electrons whose energy are below Fermi-level will be trapped and create energy barrier at conduction band. During FN program, with applied gate bias, more grain boundary traps will be filled with electrons. As a result, those regions with grain boundary have smaller band bending than other regions. Because gate bias is the same whether there are grain boundaries or not, larger gate voltage will drop on the tunneling oxide at grain boundaries so that the program speed is enhanced. In other word, when the number of grain boundary increases, the program speed also increases. For FN program state variation, we find that the FN program state variation is less to do with the number of grain boundary. It is the grain boundary trap density variation among samples that dominates the program state variation. According to the measurement results, we conclude that the furnace annealed sample has the largest grain boundary trap density variation than the laser annealed sample and the single crystal sample. For FN erase speed comparison, there is no apparent difference among different grain size devices. It is because the barrier of hole is larger than electron. As a result, the grain boundary effect on FN erase is not as apparent as that of the FN program. For FN erase state variation comparison, we find that the FN erase state variation shows smaller and similar tendency with that of FN program state which responds to the aforementioned deduction. In conclusion, Grain boundary effect is more significant on the FN program operation and less to do with the FN erase operation. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070150114 http://hdl.handle.net/11536/76431 |
显示于类别: | Thesis |