標題: 具多變量t自相關誤差的時間數列迴歸模型
Bayesian inference for time series regression models with multivariate t autoregressions on errors
作者: 葉怡娟
Yi-Chuan Yeh
李昭勝
林宗儀
Dr. Jack C. Lee
Dr. Tsung I. Lin
統計學研究所
關鍵字: 近似推論;蒙地卡羅馬可夫鏈;預測分配;再參數化;Approximate inference;Markov chain Monte Carlo;Predictive distribution;Reparameterization
公開日期: 2005
摘要: 本篇論文考慮具自迴歸多變量t誤差的線性迴歸模型的貝氏方法,它的條件變異數滿足了GARCH模型的一種型式。在沒有訊息的先驗分配下,我們提出了近似貝氏的後驗方法與預測的推論。我們也運用馬可夫鏈蒙地卡羅去更精確地計算後驗分配。為提高計算上的效率,我們提供了一個求具AR(p)過程的自相關矩陣之反矩陣的快速計算方法。最後我們用一個美國利率的實例來闡述我們所提出的方法。
This thesis considers a Bayesian approach to the regression model with autoregressive multivariate t errors, whose conditional variance satis‾es a kind of generalized autoregressive conditional heteroscedastic model. We present the approximate Bayesian posterior and predictive inferences under a non-informative prior. Markov chain Monte Carlo computational schemes are developed for precisely accounting for the posterior uncertainties. To enhance the computational e±ciency, we provide a fast method to compute the inverse autocorrelation matrix of an AR(p) process. A real example of the U.S. interest rates is conducted to demonstrate our methodologies.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009226513
http://hdl.handle.net/11536/76886
Appears in Collections:Thesis


Files in This Item:

  1. 651301.pdf
  2. 651302.pdf
  3. 651303.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.