完整后设资料纪录
DC 栏位语言
dc.contributor.author范端芳en_US
dc.contributor.authorTuan-Fang Fanen_US
dc.contributor.author刘敦仁en_US
dc.contributor.authorDuen-Ren Liuen_US
dc.date.accessioned2014-12-12T02:48:22Z-
dc.date.available2014-12-12T02:48:22Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009234804en_US
dc.identifier.urihttp://hdl.handle.net/11536/77186-
dc.description.abstract近年来,从资料库中发掘知识与其核心机制—资料探勘越来越受到广泛的注意。虽然资料探勘研究一贯是以设计高效率的演算法为主,然如何使探勘所得的知识能对使用者有用,仍然持续成为该领域一个最具挑战性的问题。由于知识能对使用者有用的先决条件是使用者能瞭解其意义,因此知识表征机制在知识管理过程中便扮演着重要的角色。
我们在本学位论文中探讨的就是从粗略集合论观点对决策逻辑作若干扩充。传统决策逻辑是以粗略集合论为基础的资料探勘中一种标准的知识表征机制,而我们的扩充显示出决策逻辑型机制对于较复杂的知识管理工作亦非常有用。
我们一方面提出数种决策逻辑语言,可用于表达以粗略集合论为基础的多准则决策分析方法所产生的决策法则,这些语言的语意模型为表示多准则决策记录之资料表,其中每一个决策记录都可以用有限多个属性或准则来描述。而准则与属性的差别是属性值之间不见得有优劣关系,而准则的值之间必然存在优劣关系。
另一方面,我们提出矢决策逻辑来对关联资讯系统中所发掘出来的知识作表征与推理。此一逻辑系结合矢逻辑与决策逻辑的主要特征而成,其中矢逻辑为一种用于关系推理的样态逻辑。矢决策逻辑的逻辑式可以在关联资讯系统中加以解释,而关联资讯系统不仅描述物件的属性,亦描述其彼此之间的关系。我们提出一种矢决策逻辑的公设化系统,证明其完备性,并展现其在多准则决策分析与社交网路分析上的应用。

我们的结果对知识管理中知识表征此一环节特别有用。我们以一个现实的例子来说明我们所提出来的机制可用来辅助公司聘雇人员及形成团队过程中不同阶段的知识表征需求。
zh_TW
dc.description.abstractIn recent years, knowledge discovery in databases (KDD) and its kernel data mining have received
more and more attention for practical applications. While the mainstream research of data mining
concentrates on the design of efficient algorithms for extracting knowledge from databases, the
question to close the semantic gap between structured data and human-comprehensible concepts
has been a lasting challenge for the research community. Since the discovered knowledge is useful
for a human user only when he can understand its meaning, the representation formalism will
play an important role during the knowledge management life cycle.
In this dissertation, we investigate several extensions of decision logic (DL) from the perspective
of rough set theory. Traditionally, DL has been considered as a standard way of knowledge
representation for rough set-based data mining, whereas our extensions show that DL-styled logics
are also useful in more complicated knowledge management tasks.
On the one hand, we propose some decision logic languages for rule representation in rough
set-based multicriteria decision analysis. The semantic models of these logics are data tables
representing multicriteria decision records. Each decision record is described by a finite set of
criteria/attributes. The domains of the criteria may have ordinal properties expressing preference
scales, while the domains of the attributes may not.
On the other hand, we propose an arrow decision logic (ADL) to represent and reason about
knowledge discovered from relational information systems (RIS). The logic combines the main
features of decision logic (DL) and arrow logic (AL). AL is the basic modal logic of arrows.
ADL formulas are interpreted in RIS which not only specifies the properties of objects, but also
the relationships between objects. We present a complete axiomatization of ADL and discuss
its application to knowledge representation in multicriteria decision analysis and social network
analysis.
Our work is particularly useful for the knowledge representation phase in the knowledge management
life cycle. A realistic scenario about human resource management is used to show how
the proposed logics can serve as representational formalisms in different stages of the recruitment
process and team formation process of a company.
en_US
dc.language.isoen_USen_US
dc.subject知识管理zh_TW
dc.subject资料探勘zh_TW
dc.subject决策逻辑zh_TW
dc.subject粗略集zh_TW
dc.subject知识表征zh_TW
dc.subject矢决策逻辑zh_TW
dc.subjectknowledge managementen_US
dc.subjectdata miningen_US
dc.subjectdecision logicen_US
dc.subjectrough seten_US
dc.subjectknowledge representationen_US
dc.subjectarrow decision logicen_US
dc.title决策逻辑型机制及其在知识表征中之应用zh_TW
dc.titleDecision Logic-Styled Formalisms for Knowledge Representationen_US
dc.typeThesisen_US
dc.contributor.department资讯管理研究所zh_TW
显示于类别:Thesis


文件中的档案:

  1. 480401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.