完整後設資料紀錄
DC 欄位語言
dc.contributor.author余家慧en_US
dc.contributor.authorChia-Hui Yuen_US
dc.contributor.author陳志榮en_US
dc.contributor.authorChih-Rung Chenen_US
dc.date.accessioned2014-12-12T02:57:43Z-
dc.date.available2014-12-12T02:57:43Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009326502en_US
dc.identifier.urihttp://hdl.handle.net/11536/79280-
dc.description.abstract在此篇論文中,首先對在製程控制下的先驗分配提出一個由兩個成份組成的混合先驗有母數族。然後在可以得到製程控制下所產生的某些類別資料時,提出一個經驗貝氏的方法。接著提出一個例子來解釋此經驗貝氏模型。為了建構模型,我們討論此經驗貝氏模型之配適度和簡化。利用概似比的方法,提出貝氏和經驗貝氏製程監控技術來作為本篇論文的主要目的。最後藉由平均連串長度來研究此製程監控技術的表現。zh_TW
dc.description.abstractIn the paper, first, a two-components mixture prior parametric family for the in-control prior distribution is proposed in a manufacturing process. Then an empirical Bayes approach is proposed when there are available in-control categorical data generated from the manufacturing process. As an illustration, an example of the proposed empirical Bayes model is introduced. For the purpose of model building, the goodness of fit and the simplification of the proposed model are discussed. Utilizing the likelihood ratio method, both Bayesian and empirical Bayes monitoring techniques are proposed as the main purpose of the paper. Finally, the performance of the proposed process monitoring scheme is studied in terms of the average run length to show the robustness of the methodology.en_US
dc.language.isoen_USen_US
dc.subject經驗貝氏zh_TW
dc.subject製程監控zh_TW
dc.subject類別資料zh_TW
dc.subject混合先驗zh_TW
dc.subjectbeta-二項式zh_TW
dc.subjectDirichlet-多項式zh_TW
dc.subject變換-常態-二項式zh_TW
dc.subject變換-常態-多項式zh_TW
dc.subject管制圖zh_TW
dc.subject品質管制zh_TW
dc.subjectEmpirical Bayesen_US
dc.subjectProcess monitoringen_US
dc.subjectCategorical dataen_US
dc.subjectMixture prioren_US
dc.subjectBeta-binomialen_US
dc.subjectDirichlet-multinomialen_US
dc.subjectTransformed-normal-binomialen_US
dc.subjectTransformed-normal-multinomialen_US
dc.subjectControl charten_US
dc.subjectQuality controlen_US
dc.title類別資料混合先驗分配之經驗貝氏製程監控技術zh_TW
dc.titleA PROCESS MONITORING TECHNIQUE FOR CATEGORICAL DATAen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 650201.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。