完整後設資料紀錄
DC 欄位語言
dc.contributor.author謝宛茹en_US
dc.contributor.author李昭勝en_US
dc.contributor.author林宗儀en_US
dc.contributor.authorDr. Jack C. Leeen_US
dc.contributor.authorDr. Tsung I. Linen_US
dc.date.accessioned2014-12-12T02:57:43Z-
dc.date.available2014-12-12T02:57:43Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009326503en_US
dc.identifier.urihttp://hdl.handle.net/11536/79281-
dc.description.abstract混合t分佈已被認為是混合常態分佈的一種具穩健性的延伸。近年來, 處理具異質性並牽涉了具不對稱現象的資料問題中, 混合偏斜常態分佈已經被驗證是一種很有效的工具。本文我們提出一種具穩健性的混合偏斜t分佈模型來有效地處理當資料同時具有厚尾、偏斜與多峰型式的現象。除此之外, 混合常態分佈(NORMIX)、混合t 分佈(TMIX)與混合偏斜常態分佈(SNMIX)模型皆可視為本篇論文所提出混合偏斜t分佈(STMIX)的特例。我們建立一些EM-types演算法, 以遞迴的方式去求最大概似估計值。最後, 我們也透過分析一組實例來闡述我們所提出來方法。zh_TW
dc.description.abstractA finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present some analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.en_US
dc.language.isoen_USen_US
dc.subjectEM形式演算法zh_TW
dc.subject異質性數據zh_TW
dc.subject最大概似zh_TW
dc.subject遠離中心的觀察值zh_TW
dc.subject混合偏斜t分佈zh_TW
dc.subject截斷性常態分配zh_TW
dc.subjectEM-type algorithmsen_US
dc.subjectHeterogeneity dataen_US
dc.subjectMaximum likelihooden_US
dc.subjectOutlying observationsen_US
dc.subjectSkew t mixturesen_US
dc.subjectTruncated normalen_US
dc.title混合偏斜t分佈及其應用zh_TW
dc.titleOn the mixture of skew t distributions and its applicationsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 650301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。