标题: | 藉由K 均值分群与阶层式分群程序对潜在群体分析做参数估计 Parameter Estimation for Latent Class Models via K-means and Hierarchical Procedures |
作者: | 王素梅 黄冠华 统计学研究所 |
关键字: | 潜在群体回归;k均值分群;阶层式分群;Regression of latent class analysis ( RLCA);k-means;hierarchical |
公开日期: | 2006 |
摘要: | 本研究的主要目的是藉由群聚分析的方法对潜在群体模型做参数估计。我们引用了群聚方法中的k 均值分群和阶层式分群的想法,将原本的距离测度改成相关系数或共变异数,然后对所有的主体分群,使得属于在同一群的主体所测得的各项目能互相独立。将估计出的潜在群体视为已知变数后,再去估计潜在群体回归分析模型的参数就变得容易多了。我们的模拟结果显示出:所用的测度为相关系数或共变异数的k 均值分群法表现得不错,但是所用的测度为共变异数的阶层式分群法表现得并不好。 The aim of the study is to estimate the parameters of the latent class models via clustering methods. We use k-means and hierarchical ideas of clustering methods with the correlation (or covariance) among items as the distance measure to group objects such that, for all objects who belong to the same latent class, items are ”independent”. By viewing the estimated latent class as known variable, it becomes easy to estimate the parameters in the regression extension of latent class analysis (RLCA) model. The results of our simulation study display that the k-means method with the correlation (or covariance) measurement performed well, but the hierarchical method with the covariance measurement didn’t perform well. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009426517 http://hdl.handle.net/11536/81456 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.