标题: 无线感测网路中以统计学习模型为基础之异常行为侦测
Detecting Anomalous Behaviors in WSNs with Statistical Learning Model
作者: 王朝彦
Chau-yan Wang
谢续平
Shiuhpyng Shieh
资讯科学与工程研究所
关键字: 感测网路;异常侦测;动态临届值;sensor networks;detecting anomalous behaviors;dynamic threshold
公开日期: 2006
摘要: 在无线感测网路中,传统侦测节点异常行为的方法往往需要额外的监控节点来进行监控的动作。这些方法也需要比较冗长的训练时间来完成对节点建立正常行为模型的动作,根据所建立的行为模型,当有节点行为偏离该行为模型则被认为是异常的行为。这样的侦测方式通常使用预设的临界值来辨别异常的活动产生。然而,节点的行为可能会随着时间的不同而进行改变,所以一个预先设定好的临界值往往没办法精确的分辨网路异常的状况。在本篇论文中,我们提出一个临界值设定的方法,该方法藉由结合灰色预测模型及马可夫模型来建立节点正常行为的模型。除此之外,若节点行为发生改变,该方法可以动态的改变临界值来适应节点行为的改变。本方法可以容易的使用在无线感测网路中,而不需要额外的监控节点。根据实验显示,本方法可以精确而有效的找出无线感测网路中的异常行为。
Conventional anomaly detection schemes for WSNs require special detection nodes to monitor node behaviors. These schemes also need long training time to model sensor node behaviors and construct node profiles. When a node deviates from its node behavior profile, it is considered as anomaly. In this type of schemes, it is common to use a predetermined threshold to differentiate anomalous activities. However, node behavior may vary over time, and therefore a fixed threshold may not be able to accurately differentiate anomalies. In this paper, we propose a threshold estimation method which combines the Grey Prediction Model and Markov Residual Error Model to model normal node behaviors, and can dynamically adjust the threshold to adapt to the changing behavior of WSNs. Our approach can be easily used in a WSN without the need for special detection nodes. As the experimental results showed, our proposed method can detect anomalous WSN behaviors in a more accurate and effective way than conventional schemes.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009455628
http://hdl.handle.net/11536/82142
显示于类别:Thesis


文件中的档案:

  1. 562801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.