标题: | 在大型网路下以群簇法为基础的样本比对定位法之研究 Cluster-Based Pattern-Matching Localization Schemes for Large-Scale Wireless Networks |
作者: | 吴秉祯 Bing-Jhen Wu 曾煜棋 Yu-Chee Tseng 网路工程研究所 |
关键字: | 位置追踪;样本比对定位法;即时性应用服务;感测网路;无线网路;Location Tracking;Pattern-Matching Localization;Real-time Applications;Sensor Networks;Wireless Networks |
公开日期: | 2006 |
摘要: | 在定位服务里,系统的反应时间是一个关键点,对于即时性的应用来说,更是如此。在大型网路下(如无线城市),以样本比对法为基础的定位系统,如此的需求更为明显。此类定位法的运作是仰赖目前物体收集到的讯号强度特征与事先在训练阶段建立的以讯号强度为样本的资料库做比对来达到定位的目的。在这篇论文中,我们提出一个以群簇法为基础的样本比对定位架构来加快定位的程序。藉着将拥有类似的讯号特征样本的训练点群聚在一起,我们会展示如何降低定位所需的比较复杂度来加速整个定位的流程。为了解决讯号飘移的问题,我们更提出了几个有效的分群法。在许多广泛的模拟的结果下,我们可以发现:平均来说,在不影响定位准确度的情况下,我们提出的系统相较于原来的样本比对法的比较复杂度上可减少至少90%。 In location-based services, the response time of location determination is critical, especially in real-time applications. This is especially true for pattern-matching localization methods, which rely on comparing an object's current signal strength pattern against a pre-established location database of signal strength patterns collected at the training phase, when the sensing field is large (such as a wireless city). In this work, we propose a cluster-based localization framework to speed up the positioning process for pattern-matching localization schemes. Through grouping training locations with similar signal strength patterns, we show how to reduce the associated comparison cost so as to accelerate the pattern-matching process. To deal with signal fluctuations, several clustering strategies are proposed. Extensive simulation studies are conducted. Experimental results show that more than 90% computation cost can be reduced in average without degrading the positioning accuracy. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009456503 http://hdl.handle.net/11536/82170 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.