標題: | A comparison of neural network and multiple regression analysis in modeling capital structure |
作者: | Pao, Hsiao-Tien 管理科學系 Department of Management Science |
關鍵字: | capital structure;multiple regression model;artificial neural network model |
公開日期: | 1-Oct-2008 |
摘要: | Empirical studies of the variation in debt ratios across firms have used statistical models singularly to analyze the important determinants of capital structure. Researchers, however, rarely employ non-linear models to examine the determinants and make little effort to identify a superior prediction model. This study adopts multiple linear regressions and artificial neural networks (ANN) models with seven explanatory variables of corporation's feature and three external macro-economic control variables to analyze the important determinants of capital structures of the high-tech and traditional industries in Taiwan, respectively. Results of this study show that the determinants of capital structure are different in both industries. The major different determinants are business-risk and growth opportunities. Based on the values of RMSE, the ANN models achieve a better fit and forecast than the regression models for debt ratio, and ANNs are cable of catching sophisticated non-linear integrating effects in both industries. It seems that the relationships between debt ratio and independent variables are not linear. Managers can apply these results for their dynamic adjustment of capital structure in achieving optimality and maximizing firm's value. (c) 2007 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.eswa.2007.07.018 http://hdl.handle.net/11536/8331 |
ISSN: | 0957-4174 |
DOI: | 10.1016/j.eswa.2007.07.018 |
期刊: | EXPERT SYSTEMS WITH APPLICATIONS |
Volume: | 35 |
Issue: | 3 |
起始頁: | 720 |
結束頁: | 727 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.