Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, C. H.en_US
dc.contributor.authorChin, Alberten_US
dc.contributor.authorYeh, F. S.en_US
dc.date.accessioned2014-12-08T15:12:03Z-
dc.date.available2014-12-08T15:12:03Z-
dc.date.issued2011-03-01en_US
dc.identifier.issn0741-3106en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LED.2010.2095820en_US
dc.identifier.urihttp://hdl.handle.net/11536/9239-
dc.description.abstractUsing stacked covalent-bond-dielectric GeO(x) on metal-oxynitrideHfON, the Ni/GeO(x)/HfON/TaN resistive random access memory (RRAM) showed ultralow set power of 0.3 mu W (0.1 mu A at 3 V), reset power of 0.6 nW (-0.3 nA at -1.8 V), fast 20-ns switching time, ultralow 8-fJ switching energy (4-V overstress), and excellent 10(6) cycling endurance. Such excellent performance was reached by using hopping conduction with negative temperature coefficient (TC) rather than the positive TC in metal-oxide RRAM.en_US
dc.language.isoen_USen_US
dc.titleUltralow Switching Energy Ni/GeO(x)/HfON/TaN RRAMen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LED.2010.2095820en_US
dc.identifier.journalIEEE ELECTRON DEVICE LETTERSen_US
dc.citation.volume32en_US
dc.citation.issue3en_US
dc.citation.spage366en_US
dc.citation.epage368en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
Appears in Collections:Articles