Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuah, MKen_US
dc.contributor.authorHu, CCen_US
dc.date.accessioned2014-12-08T15:16:19Z-
dc.date.available2014-12-08T15:16:19Z-
dc.date.issued2006-07-01en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2005.12.022en_US
dc.identifier.urihttp://hdl.handle.net/11536/12107-
dc.description.abstractAn extended Vogan diagram is an extended Dynkin diagram with a diagram involution, such that the vertices fixed by the involution can be painted or unpainted. Every extended Vogan diagram represents an almost compact real form of some affine Kac-Moody Lie algebra. Two diagrams may represent isomorphic algebras, and in this case we say that the diagrams are equivalent. In this paper, we classify the equivalence classes of extended Vogan diagrams, and provide a complete list of all diagrams within each class. It gives a combinatorial classification of the isomorphic classes of almost compact real forms of the affine Kac-Moody Lie algebras. (c) 2006 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectextended Vogan diagramen_US
dc.subjectalmost compact real formen_US
dc.subjectKac-Moody Lie algebraen_US
dc.titleExtended Vogan diagramsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2005.12.022en_US
dc.identifier.journalJOURNAL OF ALGEBRAen_US
dc.citation.volume301en_US
dc.citation.issue1en_US
dc.citation.spage112en_US
dc.citation.epage147en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000238298600006-
dc.citation.woscount12-
Appears in Collections:Articles


Files in This Item:

  1. 000238298600006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.