完整後設資料紀錄
DC 欄位語言
dc.contributor.authorMu, Szu-Pangen_US
dc.contributor.authorChao, Mango C. -T.en_US
dc.contributor.authorChen, Shi-Haoen_US
dc.contributor.authorWang, Yi-Mingen_US
dc.date.accessioned2017-04-21T06:55:35Z-
dc.date.available2017-04-21T06:55:35Z-
dc.date.issued2016-05en_US
dc.identifier.issn1063-8210en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TVLSI.2015.2478921en_US
dc.identifier.urihttp://hdl.handle.net/11536/133641-
dc.description.abstractThis paper presents a model-fitting framework to correlate the on-chip measured ring-oscillator counts to the chip\'s maximum operating speed. This learned model can be included in an auto test equipment (ATE) software to predict the chip speed for speed binning. Such a speed-binning method can avoid the use of applying any functional test and, hence, result in a third-order test time reduction with a limited portion of chips placed into a slower bin compared with the conventional functional-test binning. This paper further presents a novel builtin self-speed-binning system, which embeds the learned chip-speed model with a built-in circuit such that the chip speed can be directly calculated on-chip without going through any offline ATE software, achieving a fourth-order test-time reduction compared with the conventional speed binning. The experiments were conducted based on 360 test chips of a 28-nm, 0.9 V, 1.6-GHz mobile-application system-on-chip.en_US
dc.language.isoen_USen_US
dc.subjectMachine learningen_US
dc.subjectrind oscillatoren_US
dc.subjectspeed binningen_US
dc.titleStatistical Framework and Built-In Self-Speed-Binning System for Speed Binning Using On-Chip Ring Oscillatorsen_US
dc.identifier.doi10.1109/TVLSI.2015.2478921en_US
dc.identifier.journalIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMSen_US
dc.citation.volume24en_US
dc.citation.issue5en_US
dc.citation.spage1675en_US
dc.citation.epage1687en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000375278300006en_US
顯示於類別:期刊論文