標題: 液態製程之高效率有機及混合型太陽能電池
High Efficiency Solution-Processed Organic and Hybrid Solar Cells
作者: 蔡佩庭
孟心飛
Tsai, Pei-Ting
物理研究所
關鍵字: 有機太陽能電池;有機無機混合型太陽能電池;無氯溶劑;大面積;壽命;刮刀塗佈;organic solar cells;hybrid solar cells;chlorine-free solvents;large-area;lifetime;blade coating
公開日期: 2017
摘要: 本論文研究目的為提升太陽能電池之實用價值,並依太陽能電池種類分為兩部分進行探討 : 第一部分主要利用刮刀塗佈技術製作有機太陽能電池元件,相較於傳統旋轉塗佈法,刮刀塗佈技術具材料使用率高、大面積塗佈、低互溶多層塗佈等優勢;如能使太陽能電池兼具高效率、低毒性、大面積、低成本且高壽命,將能符合實用需求。第一章將簡介太陽能電池發展,並說明刮刀塗佈技術優勢;第二章介紹太陽能電池工作原理;第三章介紹使用無氯溶劑製備低能隙材料PBDTTT-C-T:PC71BM高效率有機太陽能電池,製程對環境友善,其光電轉換效率可達6.1%;第四章著重研究刮刀加速度塗佈技術,使有機薄膜均勻度大幅提升,製備主動區108 cm2之P3HT:PCBM和POD2T-DTBT:PC71BM大面積有機太陽能電池,其光電轉換效率分別為2.66%和3.64%;許多高效率有機太陽能電池需在主動層中摻入微量添加劑,但添加劑將殘留於主動層中不利元件穩定性,第五章以刮刀塗佈製備之小分子太陽能電池元件無須添加劑,並以熱退火提升小分子有機太陽能電池性能,光電效率可達6.69%;欲提升實用價值,增強元件壽命是重要且熱門的研究議題,第六章將深入探討元件衰退機制及其結構與製程改良,熱退火、多層及反式結構皆有效提升元件穩定性,目前最佳元件壽命為在連續照光且穩定輸出操作近2年,效率仍維持在原始效率之六成以上。第二部分將介紹高效率有機/無機混合型異質接面太陽能電池,其兼具有機太陽能電池的低溫、低成本溶液製程和無機太陽能電池的高效率、高穩定性等優點。第七章將介紹以溶液製程p型摻雜高螢光性聚合物,作為一界面複合層以提升有機/矽界面之電荷傳輸,其光電轉換效率高達13.66%。綜合以上改善,太陽能電池可達到無毒、高效率、高穩定性、大面積以及低成本等特性,期盼本論文研究成果能使實驗階段之太陽能電池往商業發展更邁進一步。
In this thesis, the purpose is to develop practical utility of solar cells. The thesis is sectioned into two main blocks: Chapters 3-6 cover the enhancement of organic solar cells using blade coating technology, including power conversion efficiency (PCE), low toxicity, large-area, and lifetime, using blade coating method. The advantages of blade coating include low material waste, roll-to-roll compatibility, large-area coating scale, rapid drying of multilayer structures. Chapters 6 cover the organic/inorganic hybrid solar cells. Chapter 1 is a general introduction to the field and blade coating technology. Chapter 2 is the working principles and measurements of solar cells. Chapter 3 is that the chlorine-free solvents toluene and xylene is applied to polymer solar cells that contained the low band-gap polymer PBDTTT-C-T blended with PC71BM. High-performance polymer cells are typically fabricated by employing toxic solvents such as dichlorobenzene and chlorobenzene. The highest efficiencies of the cells fabricated in xylene solutions were 6.1%. Chapter 4 is the study of accelerated blade motion in this technique significantly improved the thickness uniformity of blade-coated layers of polymer solar cells on an A4 glass substrate. The PCE of the resulting 10-cell module was 2.66% and 3.64% for P3HT:PCBM and POD2T-DTBT:PC71BM, respectively. Chapter 5 cover a DR3TBDTT:PC71BM blend active layer without an additive was effectively formed through blade coating. The PCE of small organic molecule solar cells was 6.69%. Chapter 6 exhibited three types of OSCs to improve stability: active layer with thermal annealing, multilayer, and inverted structures. Under continuous illumination and operation, the PCE of multi-layer device maintained 63% of their original PCEs over 1.8-year storage. Chapter 7 exhibited the solution p-type doping of highly- fluorescent conjugated polymers PFO demonstrate superior transport characteristics. The best PCE achieves 13.66% from the device with 30% p-doped PFO. The solar cells which combine the properties of high efficiecy, low toxicity, large-area, low-cost, light-weight, and long lifetime will make possible a real commercial application.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070052715
http://hdl.handle.net/11536/140544
Appears in Collections:Thesis