标题: 液态制程之高效率有机及混合型太阳能电池
High Efficiency Solution-Processed Organic and Hybrid Solar Cells
作者: 蔡佩庭
孟心飞
Tsai, Pei-Ting
物理研究所
关键字: 有机太阳能电池;有机无机混合型太阳能电池;无氯溶剂;大面积;寿命;刮刀涂布;organic solar cells;hybrid solar cells;chlorine-free solvents;large-area;lifetime;blade coating
公开日期: 2017
摘要: 本论文研究目的为提升太阳能电池之实用价值,并依太阳能电池种类分为两部分进行探讨 : 第一部分主要利用刮刀涂布技术制作有机太阳能电池元件,相较于传统旋转涂布法,刮刀涂布技术具材料使用率高、大面积涂布、低互溶多层涂布等优势;如能使太阳能电池兼具高效率、低毒性、大面积、低成本且高寿命,将能符合实用需求。第一章将简介太阳能电池发展,并说明刮刀涂布技术优势;第二章介绍太阳能电池工作原理;第三章介绍使用无氯溶剂制备低能隙材料PBDTTT-C-T:PC71BM高效率有机太阳能电池,制程对环境友善,其光电转换效率可达6.1%;第四章着重研究刮刀加速度涂布技术,使有机薄膜均匀度大幅提升,制备主动区108 cm2之P3HT:PCBM和POD2T-DTBT:PC71BM大面积有机太阳能电池,其光电转换效率分别为2.66%和3.64%;许多高效率有机太阳能电池需在主动层中掺入微量添加剂,但添加剂将残留于主动层中不利元件稳定性,第五章以刮刀涂布制备之小分子太阳能电池元件无须添加剂,并以热退火提升小分子有机太阳能电池性能,光电效率可达6.69%;欲提升实用价值,增强元件寿命是重要且热门的研究议题,第六章将深入探讨元件衰退机制及其结构与制程改良,热退火、多层及反式结构皆有效提升元件稳定性,目前最佳元件寿命为在连续照光且稳定输出操作近2年,效率仍维持在原始效率之六成以上。第二部分将介绍高效率有机/无机混合型异质接面太阳能电池,其兼具有机太阳能电池的低温、低成本溶液制程和无机太阳能电池的高效率、高稳定性等优点。第七章将介绍以溶液制程p型掺杂高萤光性聚合物,作为一界面复合层以提升有机/矽界面之电荷传输,其光电转换效率高达13.66%。综合以上改善,太阳能电池可达到无毒、高效率、高稳定性、大面积以及低成本等特性,期盼本论文研究成果能使实验阶段之太阳能电池往商业发展更迈进一步。
In this thesis, the purpose is to develop practical utility of solar cells. The thesis is sectioned into two main blocks: Chapters 3-6 cover the enhancement of organic solar cells using blade coating technology, including power conversion efficiency (PCE), low toxicity, large-area, and lifetime, using blade coating method. The advantages of blade coating include low material waste, roll-to-roll compatibility, large-area coating scale, rapid drying of multilayer structures. Chapters 6 cover the organic/inorganic hybrid solar cells. Chapter 1 is a general introduction to the field and blade coating technology. Chapter 2 is the working principles and measurements of solar cells. Chapter 3 is that the chlorine-free solvents toluene and xylene is applied to polymer solar cells that contained the low band-gap polymer PBDTTT-C-T blended with PC71BM. High-performance polymer cells are typically fabricated by employing toxic solvents such as dichlorobenzene and chlorobenzene. The highest efficiencies of the cells fabricated in xylene solutions were 6.1%. Chapter 4 is the study of accelerated blade motion in this technique significantly improved the thickness uniformity of blade-coated layers of polymer solar cells on an A4 glass substrate. The PCE of the resulting 10-cell module was 2.66% and 3.64% for P3HT:PCBM and POD2T-DTBT:PC71BM, respectively. Chapter 5 cover a DR3TBDTT:PC71BM blend active layer without an additive was effectively formed through blade coating. The PCE of small organic molecule solar cells was 6.69%. Chapter 6 exhibited three types of OSCs to improve stability: active layer with thermal annealing, multilayer, and inverted structures. Under continuous illumination and operation, the PCE of multi-layer device maintained 63% of their original PCEs over 1.8-year storage. Chapter 7 exhibited the solution p-type doping of highly- fluorescent conjugated polymers PFO demonstrate superior transport characteristics. The best PCE achieves 13.66% from the device with 30% p-doped PFO. The solar cells which combine the properties of high efficiecy, low toxicity, large-area, low-cost, light-weight, and long lifetime will make possible a real commercial application.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070052715
http://hdl.handle.net/11536/140544
显示于类别:Thesis