標題: | 0.4V Reconfigurable Near-Threshold TCAM in 28nm High-k Metal-Gate CMOS Process |
作者: | Chan, Yun-Sheng Huang, Po-Tsang Wu, Shang-Lin Lung, Sheng-Chi Wang, Wei-Chang Hwang, Wei Chuang, Ching-Te 電子工程學系及電子研究所 國際半導體學院 Department of Electronics Engineering and Institute of Electronics International College of Semiconductor Technology |
關鍵字: | TCAM;near-threshold;low-voltage;SRAM mini array |
公開日期: | 1-一月-2018 |
摘要: | This paper presents a near-threshold configurable ternary content addressable memory (TCAM) design for energy-constrained neural network or software-defined network (SDN) applications. A TCAM architecture based on foundry-based 6T SRAM mini-array improves area efficiency and minimizes disturbs to enable operation down to 0.4V, and provides configurable lookup tables for users. To minimize dynamic power consumption, hierarchical precharge structure (HPRE) and don't-care based ripple search-line scheme are utilized for decreasing both the switching activities and wire capacitance. Moreover, power-gating technique, self-timed control and V-trip-tracking write-assist are used to reduce standby power, speed-up propagation delays of global signals and improve write-ability at low voltage, respectively. A reconfigurable TCAM is implemented using UMC 28nm high-k metal gate (HKMG) CMOS process. The design achieves operating frequency of 240MHz (20MHz) with energy consumption of 1.146 (0.621) fJ/bit/search at 0.9V (0.4V). |
URI: | http://hdl.handle.net/11536/151725 |
ISBN: | 978-1-5386-1491-4 |
ISSN: | 2163-9612 |
期刊: | 2018 31ST IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC) |
起始頁: | 272 |
結束頁: | 277 |
顯示於類別: | 會議論文 |