標題: Crawford numbers of powers of a matrix
作者: Wang, Kuo-Zhong
Wu, Pei Yuan
Gau, Hwa-Long
應用數學系
Department of Applied Mathematics
關鍵字: Numerical range;Crawford number;Generalized Crawford number
公開日期: 30-Dec-2010
摘要: For an n-by-n matrix A, its Crawford number c(A) (resp., generalized Crawford number C(A)) is, by definition, the distance from the origin to its numerical range W(A) (resp., the boundary of its numerical range partial derivative W(A)). It is shown that if A has eigenvalues lambda(1), ..., lambda(n) An arranged so that vertical bar lambda(1)vertical bar >= ... >= vertical bar lambda(n)vertical bar, then (lim) over bar (k) c(A(k))(1/k) (resp., (lim) over bar (k) C(A(k))(1/k))equals 0 or vertical bar lambda(n)vertical bar (resp., vertical bar lambda(j)vertical bar for some j, 1 <= j <= n). For a normal A. more can be said, namely, (lim) over bar (k) c(A(k))(1/k) = vertical bar lambda(n)vertical bar (resp., (lim) over bar (k) C(A(k))(1/k) = vertical bar lambda(j)vertical bar for some j, 3 <= j <= n). In these cases, the above possible values can all be assumed by some A. (C) 2010 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.laa.2010.08.004
http://hdl.handle.net/11536/26204
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.08.004
期刊: LINEAR ALGEBRA AND ITS APPLICATIONS
Volume: 433
Issue: 11-12
起始頁: 2243
結束頁: 2254
Appears in Collections:Articles


Files in This Item:

  1. 000283893700040.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.