標題: Crawford numbers of powers of a matrix
作者: Wang, Kuo-Zhong
Wu, Pei Yuan
Gau, Hwa-Long
應用數學系
Department of Applied Mathematics
關鍵字: Numerical range;Crawford number;Generalized Crawford number
公開日期: 30-十二月-2010
摘要: For an n-by-n matrix A, its Crawford number c(A) (resp., generalized Crawford number C(A)) is, by definition, the distance from the origin to its numerical range W(A) (resp., the boundary of its numerical range partial derivative W(A)). It is shown that if A has eigenvalues lambda(1), ..., lambda(n) An arranged so that vertical bar lambda(1)vertical bar >= ... >= vertical bar lambda(n)vertical bar, then (lim) over bar (k) c(A(k))(1/k) (resp., (lim) over bar (k) C(A(k))(1/k))equals 0 or vertical bar lambda(n)vertical bar (resp., vertical bar lambda(j)vertical bar for some j, 1 <= j <= n). For a normal A. more can be said, namely, (lim) over bar (k) c(A(k))(1/k) = vertical bar lambda(n)vertical bar (resp., (lim) over bar (k) C(A(k))(1/k) = vertical bar lambda(j)vertical bar for some j, 3 <= j <= n). In these cases, the above possible values can all be assumed by some A. (C) 2010 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.laa.2010.08.004
http://hdl.handle.net/11536/26204
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.08.004
期刊: LINEAR ALGEBRA AND ITS APPLICATIONS
Volume: 433
Issue: 11-12
起始頁: 2243
結束頁: 2254
顯示於類別:期刊論文


文件中的檔案:

  1. 000283893700040.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。