完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chuah, MK | en_US |
dc.contributor.author | Hu, CC | en_US |
dc.date.accessioned | 2014-12-08T15:38:39Z | - |
dc.date.available | 2014-12-08T15:38:39Z | - |
dc.date.issued | 2004-09-01 | en_US |
dc.identifier.issn | 0021-8693 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jalgebra.2003.10.011 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26446 | - |
dc.description.abstract | A Vogan diagram is a Dynkin diagram with an involution, and the vertices fixed by the involution may be painted. They represent real simple Lie algebras, and two diagrams are said to be equivalent if they represent the same Lie algebra. In this article we classify the equivalence classes of all Vogan diagrams. In doing so, we find that the underlying Dynkin diagrams have certain properties in graph painting. We show that this combinatorial property provides an easy classification for most of the simply-laced Dynkin diagrams. (C) 2004 Published by Elsevier Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Vogan diagram | en_US |
dc.subject | Dynkm diagram | en_US |
dc.subject | simple Lie algebra | en_US |
dc.subject | graph painting | en_US |
dc.title | Equivalence classes of Vogan diagrams | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jalgebra.2003.10.011 | en_US |
dc.identifier.journal | JOURNAL OF ALGEBRA | en_US |
dc.citation.volume | 279 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 22 | en_US |
dc.citation.epage | 37 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000223280500002 | - |
dc.citation.woscount | 14 | - |
顯示於類別: | 期刊論文 |