完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuah, MKen_US
dc.contributor.authorHu, CCen_US
dc.date.accessioned2014-12-08T15:38:39Z-
dc.date.available2014-12-08T15:38:39Z-
dc.date.issued2004-09-01en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2003.10.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/26446-
dc.description.abstractA Vogan diagram is a Dynkin diagram with an involution, and the vertices fixed by the involution may be painted. They represent real simple Lie algebras, and two diagrams are said to be equivalent if they represent the same Lie algebra. In this article we classify the equivalence classes of all Vogan diagrams. In doing so, we find that the underlying Dynkin diagrams have certain properties in graph painting. We show that this combinatorial property provides an easy classification for most of the simply-laced Dynkin diagrams. (C) 2004 Published by Elsevier Inc.en_US
dc.language.isoen_USen_US
dc.subjectVogan diagramen_US
dc.subjectDynkm diagramen_US
dc.subjectsimple Lie algebraen_US
dc.subjectgraph paintingen_US
dc.titleEquivalence classes of Vogan diagramsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2003.10.011en_US
dc.identifier.journalJOURNAL OF ALGEBRAen_US
dc.citation.volume279en_US
dc.citation.issue1en_US
dc.citation.spage22en_US
dc.citation.epage37en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000223280500002-
dc.citation.woscount14-
顯示於類別:期刊論文


文件中的檔案:

  1. 000223280500002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。