Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuah, MKen_US
dc.contributor.authorHu, CCen_US
dc.date.accessioned2014-12-08T15:38:39Z-
dc.date.available2014-12-08T15:38:39Z-
dc.date.issued2004-09-01en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2003.10.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/26446-
dc.description.abstractA Vogan diagram is a Dynkin diagram with an involution, and the vertices fixed by the involution may be painted. They represent real simple Lie algebras, and two diagrams are said to be equivalent if they represent the same Lie algebra. In this article we classify the equivalence classes of all Vogan diagrams. In doing so, we find that the underlying Dynkin diagrams have certain properties in graph painting. We show that this combinatorial property provides an easy classification for most of the simply-laced Dynkin diagrams. (C) 2004 Published by Elsevier Inc.en_US
dc.language.isoen_USen_US
dc.subjectVogan diagramen_US
dc.subjectDynkm diagramen_US
dc.subjectsimple Lie algebraen_US
dc.subjectgraph paintingen_US
dc.titleEquivalence classes of Vogan diagramsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2003.10.011en_US
dc.identifier.journalJOURNAL OF ALGEBRAen_US
dc.citation.volume279en_US
dc.citation.issue1en_US
dc.citation.spage22en_US
dc.citation.epage37en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000223280500002-
dc.citation.woscount14-
Appears in Collections:Articles


Files in This Item:

  1. 000223280500002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.