标题: | 动态临界电晶体之精简物理模型与应用 Compact Physical-Based Model and Applications of Dynamic-Threshold-Metal-Oxide-Semiconductor |
作者: | 王冠迪 Wang, Kuan-Ti 赵天生 Chao, Tien-Sheng 电子物理系所 |
关键字: | 动态临界电晶体;新颖萃取基版常数模型;动态源极射入法;零温度系数模型;DTMOS;m-Model;Dynamic-Threshold Source-Side-Injection;Zero-Temperature-Coefficient Model |
公开日期: | 2010 |
摘要: | 首先,我们将传统的最大电导外插法萃取临界电压值的方法应用在动态临界电晶体上,成功的利用实验结果证明此方法亦可应用在动态临界电晶体上;接着利用等效电位的概念,我们用能带模型来表示动态临界电晶体藉由控制闸极与源极的电位而顺利达到接近完美的通道电位控制;更进一步地,我们提出一种新颖的基板效应常数萃取方式—m模型,相较于传统必须量测不同基板电压所呈现的临界电压变化来绘图萃取曲线斜率的复杂方式,此新颖的方法可以快速的在单一元件上萃取出基板效应常数,并用来设计动态临界电晶体临界电压。此外,动态临界电晶体相对于传统电晶体可以有更好的抵抗短通道效应的能力(~9%改进),这是由于从源极与汲极端所产生的关键穿遂电场可以透过顺向基板电压的控制而降低;分离式电容电压的量测方式则证明动态临界电晶体在相同的反转层电荷密度下,能够使载子迁移率有32%增进,主要原因是顺向基板效应有效降低空乏区电荷;利用金属闸极(TaC、TiN)取代传统多晶矽闸极(Poly)来抑制闸极空乏区的效果可以有效降低等效氧化层厚度约4埃;弹道传输系数对顺向基板电压的特性结果则显示动态临界电晶体在抑制汲极端引起能障降低的效应过程中,亦将同时降低弹道传输系数;而射入速度则可以随着载子迁移率的增加而上升。 此外,我们提出一种新颖的动态临界源极射入法在具有隐藏式选择性闸极之快闪记忆体元件于NOR电路阵列上,此元件不仅制程简单也符合一般数位逻辑CMOS产品中的嵌入式非挥发性记忆体应用。在论文中,我们利用ISE电脑辅助设计模拟软体结合记忆体制程与热电子注入模型的研究成果来详细的说明此动态临界源极射入法的写入机制。模拟的结果显示当隐藏式选择性闸极记忆体操作在动态临界源极射入法下将受几个重要的因素所影响,其中包含了写入电流量的大小与在隐藏式选择性闸极记忆体中性区间的横向电场与垂直电场。因此,我们比较在此记忆体结构中三种不同操作模式下的写入效率,分别为:传统源极射入法、基板偏压增进源极射入法与动态临界射入法。从量测实验资料与电脑辅助模拟结果中可以发现,相较于传统源极射入法,动态临界射入法能同时大幅度的增加写入电流量(~450%)与中性区间的最大横向电场量值(~6%),进而拥有较高的写入效率。最后,我们利用动态临界模式来完成具高效能(□PGM=200ns/□ERS=5ms)而低功率消耗(~25%降低)的单细胞二位元多层级操作,藉着利用动态临界源极射入法的操作,多层级操作可以有更好的临界电压感测分布区间、较低的单细胞二位元效应、优异的耐久力特性与良好的资料保存力。 最后,我们探讨了操作温度对动态临界电晶体的影响,发现驱动电流对闸极偏压变化中有一零温度系数点(Zero-Temperature-Coefficient Point),此零温度系数点的发生,主要是因为临界电压与载子迁移率的互相补偿结果;同时,当此动态临界电晶体操作在低温环境中,则可以降低关闭电流(off-current),主要的原因是当元件随着操作环境温度降低时,本质载子密度会随之下降(ni),造成临界电压值上升;而低温下(-50oC)的驱动电流则可以有1.4倍的提升。因此,正确的预测零温度系数点将有助于操作动态临界电晶体于不同环境温度的应用,因此我们提出了一种新颖的动态临界电晶体之零温度系数模型来预测其操作点,可以非常准确的将误差值降低在2%左右,其中短通道元件必须考虑汲极端偏压降低能障效应对温度与临界电压变化的影响。从实验结果与理论模型上,亦可发现从固定基板偏压的零温度系数模型延伸至动态临界电晶体上的零温度系数模型是有一致性的结果,藉着将元件物理参数对操作环境温度的影响详加考虑,可以藉由适当的调整金属功函数、基板效应常数与动态基板电压对闸极偏压的变化值来设计出动态临界电晶体所需要的零温度系数点。 First, we use the maximum transconductance linear extrapolated method to extract VTH of DTMOS. It can largely reduce drafting time of extracting VTH of DTMOS by using this method. Furthermore, we lead the equivalent potential concept into DTMOS to indicate the channel potential control ability of both gate and source terminals with using band diagram, simultaneously. It deduces the m-model for extracting body effect coefficient without complicated variable substrate bias and fitting process. In addition, the penetration electric field from drain/source can be suppressed by the forward body bias of DTMOS, especially for short channel device. As a result, it improves the short channel effect (~9%) in DT technology due to decreasing of charge sharing effect. Then, we use split C-V to extract the effective mobility of DTMOS. Comparing to normal device, the higher mobility (~32%) of DTMOS can be attributed to the decreasing of normal electrical field for minor depletion region. The effect oxide thickness about 4 A of DTMOS can be reduced by using metal gate (TiN、TaC) to replace poly gate. It achieves by eliminating poly gate depletion. Besides, we prove that DTMOS owns the lower ballistic transport coefficient with higher injection velocity from source terminal due to its suppression of DIBL effect. For the first time, high-performance with superior reliability characteristics is demonstrated in a NOR-type architecture, using dynamic-threshold source-side injection (DTSSI) in a wrapped select-gate (WSG) silicon-oxide-nitride-oxide-silicon (SONOS) memory device, with multilevel and 2-bit/cell operation. The DTSSI programming mechanism was thoroughly investigated using the Integrated Systems Engineering (ISE) TCAD simulation tools combining the fabrication procedure and physical models. Results show the major factors affecting the DTSSI technique, including the supply current, and the lateral and vertical electric fields between the neutral-gap regions in the WSG-SONOS memory cell. Moreover, a programming mechanism for conventional source-side injection (Normal-mode), substrate-bias enhanced source-side injection (Body mode) and dynamic-threshold source-side injection (DT mode) of wrapped-select-gate SONOS (WSG-SONOS) memory is also developed with 2-D Possion equation and hot-electron simulation and programming characteristics measurement for NOR flash memory. Compared with traditional SSI, the DTSSI mechanisms are enhanced in terms of lateral acceleration electric field (~6%) and supply current (~450%) in the neutral gap region, resulting in high programming efficiency. It also provides lower power consumptions (~25% decrease). Finally, the high-performance (□PGM=200ns/□ERS=5ms) with low supply current in DT mode is used to achieve the multilevel and 2-bit/cell operation. Using the DTSSI enables easy extraction of the multilevel states with tight VTH distribution, nearly negligible second-bit effect, superior endurance characteristics, and good data retention. Finally, we discuss DTMOS with regard to operation temperature effect. We find a zero-temperature-coefficient point with no current variation at elevated temperature in DT mode operation. The main reason is that compensation between threshold voltage and mobility at elevated temperature. Once operating the device with higher gate voltage than ZTC point, the phonon effect would degrade on current of device. On the contrary, the lower operation gate voltage than ZTC point would enhance the driving current due to its low threshold voltage at higher operation temperature. The decrease of threshold voltage is result from the increase of intrinsic density of material at elevated temperature. As a result, predicting the location of ZTC point precisely is very important to design device at different operation temperature. It can help to perform the circuit more stable and work well. Here, we propose a clear and simple ZTC point modeling of DTMOS with considering physical insights carefully. Using our DTMOS ZTC modeling, the mismatch value between our model and experimental data, no matter long channel or short channel device, can be reduced lower than 2%. Furthermore, the ZTC point of DTMOS can also be consistent by extracting from fixed body bias experimental data. It shows that optimum ZTC point of device can be adjusted by the body effect coefficient, work function and alpha ratio. Consequently, our model provides a design guideline for green DT technology. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079721802 http://hdl.handle.net/11536/45053 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.