完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Tzy-Chyen_US
dc.contributor.authorLin, Tsung-Ien_US
dc.date.accessioned2014-12-08T15:06:48Z-
dc.date.available2014-12-08T15:06:48Z-
dc.date.issued2010-06-01en_US
dc.identifier.issn0943-4062en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00180-009-0169-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/5339-
dc.description.abstractWe establish computationally flexible tools for the analysis of multivariate skew normal mixtures when missing values occur in data. To facilitate the computation and simplify the theoretical derivation, two auxiliary permutation matrices are incorporated into the model for the determination of observed and missing components of each observation and are manifestly effective in reducing the computational complexity. We present an analytically feasible EM algorithm for the supervised learning of parameters as well as missing observations. The proposed mixture analyzer, including the most commonly used Gaussian mixtures as a special case, allows practitioners to handle incomplete multivariate data sets in a wide range of considerations. The methodology is illustrated through a real data set with varying proportions of synthetic missing values generated by MCAR and MAR mechanisms and shown to perform well on classification tasks.en_US
dc.language.isoen_USen_US
dc.subjectClassifieren_US
dc.subjectEM algorithmen_US
dc.subjectIgnorableen_US
dc.subjectIncomplete dataen_US
dc.subjectMSN modelen_US
dc.subjectMultivariate truncated normalen_US
dc.titleSupervised learning of multivariate skew normal mixture models with missing informationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00180-009-0169-5en_US
dc.identifier.journalCOMPUTATIONAL STATISTICSen_US
dc.citation.volume25en_US
dc.citation.issue2en_US
dc.citation.spage183en_US
dc.citation.epage201en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000276653900001-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000276653900001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。