Title: 深次微米CMOS時間介電崩潰及鎖定之研究
A Study of TDDB and Latch-up in Deep Submicron CMOS
Authors: 陳志輝
Chen, Jyh-Huei
陳明哲
Ming-Jer Chen
電子研究所
Keywords: 時間介電崩潰;鎖定;蒙地卡羅方法;維持電壓;基底推出;導電率調變;TDDB;latch-up;Monte-Carlo method;holding voltage;base push-out;conductivity modulation
Issue Date: 1996
Abstract: 本論文主要探討深次微米 CMOS 時間介電崩潰及鎖定. A 部分討論
時間介電崩潰並且把重點放在開發有關本質及模式-B 之氧化矽破壞的模
擬器. B 部分探究 CMOS 鎖定並專注於維持點的模型化. 在 A 部分
,以 R. Degraeve 等人於 1995 年所做的成果為基礎之下發展出一個 C
語言程式用以模擬極薄二氧化矽的時間介電崩潰分佈. 對於蒙地卡羅方法
的基本概念及一些模擬的參數都將以更詳細討論. 而後,結合 J. C. Lee
等人所提出的二氧化矽變薄之觀念,一個新的想法被提出用以模擬模式-B
之二氧化矽破壞的統計分佈. 在 B 部分保持點的模型化主要以 J.
A. Seitchik 等人在1987年考慮基底推出及導電率調變所導出的模型為基
礎,而 CMOS 電路中的寄生 SCR 的內部行為則用二維元件模擬器做完整
的研究. 一個簡潔維持電壓模型在以上兩個結果的幫助得以建立. 接下來
引入一個結構導向的維持電流公式於這模型中,便可產生一個簡潔完的維
持電壓表示式. 最後發展出一個維持點完整模型. 令人感到驚訝的是這完
模型能正確地解釋鎖定的溫度行為,而這些模型都被實驗證無誤.
TDDB and latch-up in deep submicron CMOS are studied in
this thesis. TDDB is discussed in the Part A with emphasis on
developing a simulator for instrinsic and B-mode oxide failures.
The Part B investigates CMOS latch-up and concentrates on the
modeling of the holding point. In the Part A, a C-language
program is developed to simulate the TDDB distribution of ultra-
thin oxides based on the work by R. Degraeve et al. in 1995.
Basic concepts of Monte-Carlo method and some parameters for the
simulation are discussed in more detail. Combining the program
with the concept of oxide thinning by J. C. Lee et al., a new
idea is proposed to simulate the statistical distribution of B-
mode oxide failures. The modeling of the holding point in
the Part B is based on a physically-based analytical model
considering conductivity modulation and base push-outby J. A.
Seitchik et al. in 1987. The internal behavior of parasitic SCR
in CMOS circuits is studied completely by a two-dimensional
device simulator. With the help of the above two results, a
compact model for the holding voltage is constructed. Then
incorporating a structure-oriented holding current formula into
this model, a compact, closed-form expression for the holding
voltage is produced. Finally, a full model for the holding point
is developed. It is surprising that the full model can explain
the temperature behavior of latch-up very well. Both of the
compact and full models are thoroughly judged by experimental
results.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT850428122
http://hdl.handle.net/11536/61997
Appears in Collections:Thesis